Opencv之形態學

形態學處理

數學形態學(也稱圖像代數)表示以形態為基礎對圖像進行分析的數學工具。他的基本O思想是用具有一定形態的結構元素去量度和提取圖像中的對應形狀以達到對圖像分析和識別的目的。數學形態學的應用可以簡化圖像數據,保持他們基本的形狀特征,并出去不相干的結構。數學形態學的算法有天然的并行實現的結構。
在圖像處理方面,二值形態學經常應用到對圖像進行分割,細化,抽取骨架,邊緣提取,形狀分析,角點檢測,分水嶺算法等等。由于其算法簡單,算法能夠并行運算所以經常應用到硬件中。

形態學運算中腐蝕,膨脹,開運算和閉運算。

1. 腐蝕

腐蝕是一種消除邊界點,使邊界向內部收縮的過程。可以用來消除小且無意義的物體。
腐蝕的算法:
用3x3的結構元素,掃描圖像的每一個像素
用結構元素與其覆蓋的二值圖像做“與”操作
如果都為1,結果圖像的該像素為1。否則為0。
結果:使二值圖像減小一圈

2. 膨脹

膨脹是將與物體接觸的所有背景點合并到該物體中,使邊界向外部擴張的過程。可以用來填補物體中的空洞。
膨脹的算法:
用3x3的結構元素,掃描圖像的每一個像素
用結構元素與其覆蓋的二值圖像做“與”操作
如果都為0,結果圖像的該像素為0。否則為1
結果:使二值圖像擴大一圈

3. 開運算

先腐蝕后膨脹的過程稱為開運算。用來消除小物體、在纖細點處分離物體、平滑較大物體的邊界的同時并不明顯改變其面積。
dst = open(src, element) = dilate(erode(src,element))


開運算示例

4. 閉運算

先膨脹后腐蝕的過程稱為閉運算。用來填充物體內細小空洞、連接鄰近物體、平滑其邊界的同時并不明顯改變其面積。
dst = open(src, element) = erode(dilate(src,element))


閉運算示例

5. 形態學梯度

膨脹圖與腐蝕圖之差。



能夠保留物體的邊緣輪廓

形態學梯度示例

6. 頂帽

原圖像與開運算結果圖之差
dst = tophat(src, element) = src - open(src, element)


頂帽示例

7. 黑帽

閉運算結果圖與原圖像之差


黑帽示例
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,606評論 6 533
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,582評論 3 418
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,540評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,028評論 1 314
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,801評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,223評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,294評論 3 442
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,442評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,976評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,800評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,996評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,543評論 5 360
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,233評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,662評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,926評論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,702評論 3 392
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,991評論 2 374

推薦閱讀更多精彩內容