復雜性思維第二版 三、小世界圖

三、小世界圖

原文:Chapter 3 Small world graphs

譯者:飛龍

協議:CC BY-NC-SA 4.0

自豪地采用谷歌翻譯

現實世界中的許多網絡,包括社交網絡在內,具有“小世界屬性”,即節點之間的平均距離,以最短路徑上的邊數來衡量,遠遠小于預期。

在本章中,我介紹了斯坦利·米拉格(Stanley Milgram)的著名的“小世界實驗”,這是小世界屬性在真正的社交網絡中的第一次科學演示。之后我們將考慮 Watts-Strogatz 圖,它是一個小世界圖的模型。我將復制 Watts 和 Strogatz 所做的實驗,并解釋它打算展示的東西。

這個過程中,我們將看到兩種新的圖算法:廣度優先搜索(BFS)和 Dijkstra 算法,用于計算圖中節點之間的最短路徑。

本章的代碼在本書倉庫的chap03.ipynb中。使用代碼的更多信息請參見第(?)章。

3.1 Stanley Milgram

斯坦利·米拉格(Stanley Milgram)是美國社會心理學家,他進行了兩項最著名的社會科學實驗,即 Milgram 實驗,研究人們對權威的服從(http://en.wikipedia.org/wiki/Milgram_experiment)和小世界實驗,研究了社交網絡的結構(http://en.wikipedia.org/wiki/Small_world_phenomenon)。

在小世界實驗中,Milgram 向堪薩斯州威奇托(Wichita, Kansas)的幾個隨機選擇的人發送了包裹,帶有一個指示,要求他們向馬薩諸塞州沙龍(Sharon, Massachusetts)的目標人員發送一封附帶的信(在我長大的地方,波士頓附近),目標人員通過名字和職業確定。受訪者被告知,只有當他親自認識目標人員時,才可以將該信直接郵寄給目標;否則他們按照指示,將信和同一個指示發送給他們認為的,更有可能認識目標人員的親戚或朋友。

許多信件從來沒有發出過,但是對于發出的信件,平均路徑長度(信件轉發次數)的大約為 6。這個結果用于確認以前的觀察(和猜測),社交網絡中任何兩個人之間的通常距離是“六度分隔”。

這個結論令人驚訝,因為大多數人都希望社交網絡本地化 - 人們往往會靠近他們的朋友 - 而且在一個具有本地連接的圖中,路徑長度往往會與地理距離成比例增加。例如,我的大多數朋友都住在附近,所以我猜想社交網絡中節點之間的平均距離是大約 50 英里。威奇托距離波士頓約有 1600 英里,所以如果 Milgram 的信件穿過了社交網絡的典型環節,那么他們應該有 32 跳,而不是 6 跳。

3.2 Watts 和 Strogatz

1998年,Duncan Watts 和 Steven Strogatz 在 Nature 雜志上發表了一篇“小世界網絡的集體動態”(Collective dynamics of ’small-world’ networks)論文,提出了小世界現象的解釋。 你可以從 http://www.nature.com/nature/journal/v393/n6684/abs/393440a0.html 下載。

Watts 和 Strogatz 從兩種很好理解的圖開始:隨機圖和正則圖。在隨機圖中,節點隨機連接。在正則圖中,每個節點具有相同數量的鄰居。他們考慮這些圖的兩個屬性,群聚性和路徑長度:

群聚是圖表的“集團性”(cliquishness)的度量。在圖中,集團是所有節點的子集,它們彼此連接;在一個社交網絡中,集團是一群人,彼此都是朋友。Watts 和 Strogatz 定義了一個群聚系數,用于量化兩個節點彼此連接,并同時連接到同一個節點的可能性。

路徑長度是兩個節點之間的平均距離的度量,對應于社交網絡中的分離度。

Watts 和 Strogatz 表明,正則圖具有高群聚性和長路徑長度,而大小相同的隨機圖通常具有群聚性和短路徑長度。所以這些都不是一個很好的社交網絡模型,它是高群聚性與短路徑長度的組合。

他們的目標是創造一個社交網絡的生成模型。生成模型通過為構建或導致現象的過程建模,試圖解釋現象。Watts 和 Strogatz 提出了用于構建小世界圖的過程:

  1. 從一個正則圖開始,節點為n,每個節點連接k個鄰居。

  2. 選擇邊的子集,并將它們替換為隨機的邊來“重新布線”。

邊的重新布線的概率是參數p,它控制圖的隨機性。當p = 0時,該圖是正則的;p = 1是隨機的。

Watts 和 Strogatz 發現,較小的p值產生高群聚性的圖,如正則圖,短路徑長度的圖,如隨機圖。

在本章中,我將按以下步驟復制 Watts 和 Strogatz 實驗:

  • 我們將從構建一個環格(ring lattice)開始,這是一種正則圖。
  • 然后我們和 Watts 和 Strogatz 一樣重新布線。
  • 我們將編寫一個函數來測量群聚度,并使用 NetworkX 函數來計算路徑長度。
  • 然后,我們為范圍內的p值計算群聚度和路徑長度。
  • 最后,我將介紹一種用于計算最短路徑的高效算法,Dijkstra 算法。

3.3 環格

image

圖 3.1 n=10k=4的環格

正則圖是每個節點具有相同數量的鄰居的圖;鄰居的數量也稱為節點的度。
環格是一種正則圖,Watts 和 Strogatz 將其用作模型的基礎。 在具有n個節點的環格中,節點可以排列成圓形,每個節點連接k個最近鄰居。

例如,n = 3k = 2的環形網格將擁有以下邊:(0, 1), (1, 2), (2, 0)。 請注意,邊從編號最高的節點“繞回”0。

更一般地,我們可以像這樣枚舉邊:


def adjacent_edges(nodes, halfk):
    n = len(nodes)
    for i, u in enumerate(nodes):
        for j in range(i+1, i+halfk+1):
            v = nodes[j % n]
            yield u, v

adjacent_edges接受節點列表和參數halfk,它是k的一半。它是一個生成器函數,一次產生一個邊。它使用模運算符%,從編號最高的節點繞回最低的節點。

我們可以這樣測試:


>>> nodes = range(3)
>>> for edge in adjacent_edges(nodes, 1):
...     print(edge)
(0, 1)
(1, 2)
(2, 0)

現在我們可以使用adjacent_edges來生成環格。


def make_ring_lattice(n, k):
    G = nx.Graph()
    nodes = range(n)
    G.add_nodes_from(nodes)
    G.add_edges_from(adjacent_edges(nodes, k//2))
    return G

注意,make_ring_lattice使用地板除計算halfk,所以如果k是奇數,它將向下取整并產生具有度k-1的環格。這可能不是我們想要的,但現在還不錯。

我們可以像這樣測試函數:

lattice = make_ring_lattice(10, 4)

圖(?)展示了結果。

3.4 WS 圖

image

圖 3.2 WS 圖,n=20,k=4,p=0(左邊),p=0.2(中間),p=1(右邊)。

為了制作 Watts-Strogatz(WS)圖,我們從一個環格開始,并為一些邊“重新布線”。 在他們的論文中,Watts 和 Strogatz 以特定順序考慮邊,并用概率p重新布置每個邊。 如果邊被重新布置,則它們使第一個節點保持不變,并隨機選擇第二個節點。它們不允許自環或多邊;也就是說,節點不能擁有到它自身的邊,并且兩個節點之間不能擁有多個邊。

這是我的這個過程的實現。


def rewire(G, p):
    nodes = set(G.nodes())
    for edge in G.edges():
        if flip(p):
            u, v = edge
            choices = nodes - {u} - set(G[u])
            new_v = choice(tuple(choices))
            G.remove_edge(u, v)
            G.add_edge(u, new_v)

參數p是邊的重新布線的概率。for循環枚舉了邊,并使用flip,它以概率p返回True,來選擇哪些被重新布置。

如果我們重新布置節點u到節點v的邊,我們必須選擇一個節點來替換v,稱為new_v。為了計算可能的選擇,我們從節點集開始,它是一個集合,并且移除u和它的鄰居,這避免了自環和多邊。

然后我們從選項中選擇new_v,將uv的現有刪除,并從添加一個unew_v的新邊。

另外,表達式G[u]返回一個字典,他的鍵是包含u的鄰居。在這種情況下,它比使用G.neighbors更快一點。

這個函數不按照 Watts 和 Strogatz 指定的順序考慮邊緣,但它似乎不會影響結果。

圖(?)展示了n = 20,k = 4和范圍內p值的 WS 圖。當p = 0時,該圖是環格。 當p = 1時,它是完全隨機的。我們將看到,有趣的事情發生在兩者之間。

3.5 群聚性

下一步是計算群聚系數,它量化了節點形成集團的趨勢。 集團是一組完全連接的節點;也就是說,在集團中的所有節點對之間都存在邊。

假設一個特定的節點u具有k個鄰居。如果所有的鄰居都相互連接,則會有k(k-1)/2個邊。 實際存在的這些邊的比例是u的局部群聚系數,表示為Cu。它被稱為“系數”,因為它總是在 0 和 1 之間。

如果我們計算所有節點上的Cu平均值,我們得到“網絡平均群聚系數”,表示為C。

這是一個計算它的函數。


def node_clustering(G, u):
    neighbors = G[u]
    k = len(neighbors)
    if k < 2:
        return 0

    total = k * (k-1) / 2
    exist = 0
    for v, w in all_pairs(neighbors):
        if G.has_edge(v, w):
            exist +=1
    return exist / total

同樣,我使用G [u],它返回一個字典,鍵是節點的鄰居。如果節點的鄰居少于兩個,則群聚系數未定義,但為簡便起見,node_clustering返回 0。

否則,我們計算鄰居之間的可能的邊數量,total,然后計算實際存在的邊數量。結果是存在的所有邊的比例。

我們可以這樣測試函數:


>>> lattice = make_ring_lattice(10, 4)
>>> node_clustering(lattice, 1)
0.5

k=4的環格中,每個節點的群聚系數是0.5(如果你不相信,可以看看圖(?))。

現在我們可以像這樣計算網絡平均群聚系數:


def clustering_coefficient(G):
    cc = np.mean([node_clustering(G, node) for node in G])
    return cc

np.mean 是個 NumPy 函數,計算列表或數組中元素的均值。

然后我們可以像這樣測試:


>>> clustering_coefficient(lattice)
0.5

這個圖中,所有節點的局部群聚系數是 0.5,所以節點的平均值是 0.5。當然,我們期望這個值和 WS 圖不同。

3.6 最短路徑長度

下一步是計算特征路徑長度L,它是每對節點之間最短路徑的平均長度。 為了計算它,我將從 NetworkX 提供的函數開始,shortest_path_length。 我會用它來復制 Watts 和 Strogatz 實驗,然后我將解釋它的工作原理。

這是一個函數,它接受圖并返回最短路徑長度列表,每對節點一個。


def path_lengths(G):
    length_map = nx.shortest_path_length(G)
    lengths = [length_map[u][v] for u, v in all_pairs(G)]
    return lengths

nx.shortest_path_length的返回值是字典的字典。外層字典每個節點u到內層字典的映射,內層字典是每個節點vu->v的最短路徑長度的映射。

使用來自path_lengths的長度列表,我們可以像這樣計算L


def characteristic_path_length(G):
    return np.mean(path_lengths(G))

并且我們可以使用小型的環格來測試它。


>>> lattice = make_ring_lattice(3, 2)
>>> characteristic_path_length(lattice)
1.0

這個例子中,所有三個節點都互相連接,所以平均長度為 1。

3.7 WS 實驗

image

圖 3.3:WS 圖的群聚系數C和特征路徑長度L,其中n=1000, k=10p是一個范圍。

現在我們準備復制 WS 實驗,它表明對于一系列p值,WS 圖具有像正則圖像那樣的高群聚性,像隨機圖一樣的短路徑長度。

我將從run_one_graph開始,它接受nkp;它生成具有給定參數的 WS圖,并計算平均路徑長度mpl和群聚系數cc


def run_one_graph(n, k, p):
    ws = make_ws_graph(n, k, p)
    mpl = characteristic_path_length(ws)
    cc = clustering_coefficient(ws)
    print(mpl, cc)
    return mpl, cc

Watts 和 Strogatz 用n = 1000k = 10進行實驗。使用這些參數,run_one_graph在我的電腦上需要大約一秒鐘;大部分時間用于計算平均路徑長度。

現在我們需要為范圍內的p計算這些值。我將再次使用 NumPy 函數logspace來計算ps


ps = np.logspace(-4, 0, 9)

對于每個p的值,我生成了 3 個隨機圖,并且我們將結果平均。這里是運行實驗的函數:


def run_experiment(ps, n=1000, k=10, iters=3):
    res = {}
    for p in ps:
        print(p)
        res[p] = []
        for _ in range(iters):
            res[p].append(run_one_graph(n, k, p))
    return res

結果是個字典,將每個p值映射為(mpl, cc)偶對的列表。

最后一步就是聚合結果:


L = []
C = []
for p, t in sorted(res.items()):
    mpls, ccs = zip(*t)
    mpl = np.mean(mpls)
    cc = np.mean(ccs)
    L.append(mpl)
    C.append(cc)

每次循環時,我們取得一個p值和一個(mpl, cc)偶對的列表。 我們使用zip來提取兩個列表,mplsccs,然后計算它們的均值并將它們添加到LC,這是路徑長度和群聚系數的列表。

為了在相同的軸上繪制LC,我們通過除以第一個元素,將它們標準化:


L = np.array(L) / L[0]
C = np.array(C) / C[0]

圖(?)展示了結果。 隨著p的增加,平均路徑長度迅速下降,因為即使少量隨機重新布線的邊,也提供了圖區域之間的捷徑,它們在格中相距很遠。另一方面,刪除局部鏈接降低了群聚系數,但是要慢得多。

因此,存在較寬范圍的p,其中 WS 圖具有小世界圖的性質,高群聚度和短路徑長度。

這就是為什么 Watts 和 Strogatz 提出了 WS 圖,作為展示小世界現象的,現實世界網絡的模型。

3.8 能有什么解釋?

如果你問我,為什么行星軌道是橢圓形的,我最開始會為一個行星和一個恒星建模;我將在 http://en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation 上查找萬有引力定律,并用它為行星的運動寫出一個微分方程。之后我會擴展軌道方程式,或者更有可能在 http://en.wikipedia.org/wiki/Orbit_equation 上查找。通過一個小的代數運算,我可以得出產生橢圓軌道的條件。之后我會證明我們看做行星的物體滿足這些條件。

人們,或至少是科學家,一般對這種解釋感到滿意。它有吸引力的原因之一是,模型中的假設和近似值似乎是合理的。行星和恒星不是真正的質點,但它們之間的距離是如此之大,以至于它們的實際尺寸可以忽略不計。同一太陽系中的行星可以影響彼此的軌道,但效果通常較小。而且我們忽視相對論的影響,再次假定它們很小。

這也因為它是基于方程式的。我們可以用閉式表達軌道方程,這意味著我們可以有效地計算軌道。這也意味著我們可以得出軌道速度,軌道周期和其他數量的一般表達式。

最后,我認為這是因為它具有數學證明的形式。它從一組公理開始,通過邏輯和分析得出結果。但重要的是要記住,證明屬于模型,而不是現實世界。也就是說,我們可以證明,行星的理想模型產生一個橢圓軌道,但是我們不能證明這個模型與實際的行星有關(實際上它不是)。

  • 這些模型可以做什么工作:它們是預測性的還是說明性的,還是都有?
  • 這些模型的解釋,是否比基于更傳統模型的解釋更不滿意?為什么?
  • 我們應該如何刻畫這些和更傳統的模型之間的差異?他們在種類還是程度上不同?

在這本書中,我將提供我對這些問題的回答,但它們是暫時性的,有時是投機性的。我鼓勵你懷疑地思考他們,并得出你自己的結論。

3.9 廣度優先搜索

當我們計算最短路徑時,我們使用了 NetworkX 提供的一個函數,但是我沒有解釋它是如何工作的。為此,我將從廣度優先搜索開始,這是用于計算最短路徑的 Dijkstra 算法的基礎。

在第(?)節,我提出了reachable_nodes,它尋找從給定的起始節點可以到達的所有節點:


def reachable_nodes(G, start):
    seen = set()
    stack = [start]
    while stack:
        node = stack.pop()
        if node not in seen:
            seen.add(node)
            stack.extend(G.neighbors(node))
    return seen

我當時沒有這么說,但它執行深度優先搜索(DFS)?,F在我們將修改它來執行廣度優先搜索(BFS)。

為了了解區別,想象一下你正在探索一座城堡。你最開始在一個房間里,帶有三個門,標記為 A,B 和 C 。你打開門 C 并發現另一個房間,它的門被標記為 D ,E 和 F。

下面你打開哪個門呢?如果你打算冒險,你可能想更深入城堡,選擇 D,E 或 F。這是一個深度優先搜索。

但是,如果你想更系統化,你可以在 D,E 和 F 之前回去探索 A 和 B,這將是一個廣度優先搜索。

reachable_nodes中,我們使用list.pop選擇下一個節點來“探索”。默認情況下,pop返回列表的最后一個元素,這是我們添加的最后一個元素。在這個例子中,這是門 F。

如果我們要執行 BFS,最簡單的解決方案是將第一個元素從棧中彈出:

node = stack.pop(0)

這有效,但速度很慢。在 Python 中,彈出列表的最后一個元素需要常數時間,但是彈出第一個元素線性于列表的長度。在最壞的情況下,就是堆棧的長度O(n),這使得 BFS 的O(nm)的實現比O(n + m)差得多。

我們可以用雙向隊列(也稱為deque)來解決這個問題。deque的一個重要特征就是,你可以在開頭和末尾添加和刪除元素。要了解如何實現,請參閱 https://en.wikipedia.org/wiki/Double-ended_queue。

Python 在collections模塊中提供了deque,所以我們可以像這樣導入它:


from collections import deque

我們可以使用它來編寫高效的 BFS:


def reachable_nodes_bfs(G, start):
    seen = set()
    queue = deque([start])
    while queue:
        node = queue.popleft()
        if node not in seen:
            seen.add(node)
            queue.extend(G.neighbors(node))
    return seen

差異在于:

  • 我用名為queuedeque替換了名為stack的列表。
  • 我用popleft替換pop,它刪除并返回隊列的最左邊的元素,這是第一個添加的元素。

這個版本恢復為O(n + m)?,F在我們做好了尋找最短路徑的準備。

3.10 (簡化的)Dijkstra 算法

Edsger W. Dijkstra 是荷蘭計算機科學家,發明了一種有效的最短路徑算法(參見 http://en.wikipedia.org/wiki/Dijkstra's_algorithm)。他還發明了信號量,它是一種數據結構,用于協調彼此通信的程序(參見 http://en.wikipedia.org/wiki/Semaphore_(programming)和 Downey,《The Little Book of Semaphores》)。

作為一系列計算機科學論文的作者,Dijkstra 是著名(臭名昭著)的。 有些比如“反對 GOTO 語句的案例”(A Case against the GO TO Statement),對編程實踐產生了深遠的影響。其他比如“真正的計算機科學教學的殘酷”(On the Cruelty of Really Teaching Computing Science)的人,很有娛樂性,但效果卻不好。

Dijkstra 算法解決了“單源最短路徑問題”,這意味著它尋找從給定的“源”節點到圖中每個其他節點(或至少每個連接節點)的最小距離。

我們最開始考慮算法的簡化版本,所有邊的長度相同。更一般的版本適用于任何非負的邊的長度。

簡化版本類似于第一節中的廣度優先搜索 除了我們用稱為dist的字典替換集合seen,該字典將每個節點映射為與源的距離:


def shortest_path_dijkstra(G, start):
    dist = {start: 0}
    queue = deque([start])
    while queue:
        node = queue.popleft()
        new_dist = dist[node] + 1

        neighbors = set(G[node]) - set(dist)
        for n in neighbors:
            dist[n] = new_dist

        queue.extend(neighbors)
    return dist

這是它的工作原理:

  • 最初,隊列包含單個元素start,diststart映射為距離 0(這是start到自身的距離)。
  • 每次循環中,我們使用popleft獲取節點,按照添加到隊列的順序。
  • 接下來,我們發現節點的所有鄰居都沒有在dist中。
  • 由于從起點到節點的距離是dist [node],到任何未訪問的鄰居的距離是dist [node] +1
  • 對于每個鄰居,我們向dist添加一個條目,然后將鄰居添加到隊列中。

只有在我們使用 BFS 而不是 DFS 時,這個算法才有效。為什么?

第一次循環中,nodestartnew_dist1。所以start的鄰居距離為 1,并且進入了隊列。

當我們處理start的鄰居時,他們的所有鄰居距離為2。我們知道,他們中沒有一個距離為1,因為如果有的話,我們會在第一次迭代中發現它們。

類似地,當我們處理距離為 2 的節點時,我們將他們的鄰居的距離設為3。我們知道它們中沒有一個的距離為12,因為如果有的話,我們將在之前的迭代中發現它們。

等等。如果你熟悉歸納證明,你可以看到這是怎么回事。

但是,在我們開始處理距離為2的節點之前,只有我們處理了距離為1的所有節點,這個論證才有效,依此類推。這正是 BFS 所做的。

在本章末尾的練習中,你將使用 DFS 編寫 Dijkstra 算法的一個版本,以便你有機會看到出現什么問題。

3.11 練習

練習 1:

在一個環格中,每個節點的鄰居數量相同。鄰居的數量稱為節點的度,所有節點的度相同的圖稱為正則圖。

所有環格都是正則的,但不是所有的正則圖都是環格。特別地,如果k是奇數,則不能構造環格,但是我們可以構建一個正則圖。

編寫一個名為make_regular_graph的函數,該函數接受nk,并返回包含n個節點的正則圖,其中每個節點都有k個鄰居。如果不可能使用nk的給定值來制作正則圖,則該函數應該拋出ValueError。

練習 2:

我的reachable_nodes_bfs實現是有效的,因為它是O(n + m)的,但它產生了很多開銷,將節點添加到隊列中并將其刪除。 NetworkX 提供了一個簡單,快速的 BFS 實現,可從 GitHub 上的 NetworkX 倉庫獲取,網址為 https://github.com/networkx/networkx/blob/master/networkx/algorithms/components/connected.py。

這里是我修改的一個版本,返回一組節點:

def _plain_bfs(G, source):
    seen = set()
    nextlevel = {source}
    while nextlevel:
        thislevel = nextlevel
        nextlevel = set()
        for v in thislevel:
            if v not in seen:
                seen.add(v)
                nextlevel.update(G[v])
    return seen

將這個函數與reachable_nodes_bfs相比,看看哪個更快。之后看看你是否可以修改這個函數來實現更快的shortest_path_dijkstra版本。

練習 3:

下面的 BFS 實現包含兩個性能錯誤。它們是什么?這個算法的實際增長級別是什么?


def bfs(top_node, visit):
    """Breadth-first search on a graph, starting at top_node."""
    visited = set()
    queue = [top_node]
    while len(queue):
        curr_node = queue.pop(0)    # Dequeue
        visit(curr_node)            # Visit the node
        visited.add(curr_node)

        # Enqueue non-visited and non-enqueued children
        queue.extend(c for c in curr_node.children
                     if c not in visited and c not in queue)

練習 4:在第(?)節中,我說了除非使用 BFS,Dijkstra 算法不能工作。編寫一個shortest_path_dijkstra的版本,它使用 DFS,并使用一些例子測試它,看看哪里不對。

練習 5:

Watts 和 Strogatz 的論文的一個自然問題是,小世界現象是否特定于它的生成模型,或者其他類似模型是否產生相同的定性結果(高群聚和短路徑長度)。

為了回答這個問題,選擇 WS 模型的一個變體并重復實驗。 你可能會考慮兩種變體:

  • 不從常規圖開始,從另一個高群聚的圖開始。 例如,你可以將節點放置在二維空間中的隨機位置,并將每個節點連接到其最近的k個鄰居。
  • 嘗試不同種類的重新布線。

如果一系列類似的模型產生類似的行為,我們認為論文的結果是可靠的。

練習 6:

Dijkstra 算法解決了“單源最短路徑”問題,但為了計算圖的特征路徑長度,我們其實需要解決“多源最短路徑”問題。

當然,一個選擇是運行 Dijkstra 算法n次,每個起始節點一次。 對于某些應用,這可能夠好,但是有更有效的替代方案。

找到一個多源最短路徑的算法并實現它。請參閱 https://en.wikipedia.org/wiki/Shortest_path_problem#All-pairs_shortest_paths。

將實現的運行時間與運行 Dijkstra 算法n次進行比較。哪種算法在理論上更好?哪個在實踐中更好?NetworkX 使用了哪一個?

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,732評論 6 539
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,214評論 3 426
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 177,781評論 0 382
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,588評論 1 316
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,315評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,699評論 1 327
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,698評論 3 446
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,882評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,441評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,189評論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,388評論 1 372
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,933評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,613評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,023評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,310評論 1 293
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,112評論 3 398
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,334評論 2 377

推薦閱讀更多精彩內容