Secondlife機器智能實驗六-Q learning

算法

強化學習的目標是學習一個行為策略π:S→A,使系統選擇的動作能夠獲得環境獎賞的累計值最大,也使得外部環境對學習系統在某種意義下的評價(或整個系統的運行性能)最佳。
Q學習算法可從有延遲的回報中獲取最優控制策略。
偽碼如下
1.Set parameter, and environment reward matrixR
2.Initialize matrixQ as zero matrix
3.For each episode:

  • Select random initial state
  • Do while not reach goal state
    • Select one among all possible actions for the current state

    • Using this possible action, consider to go to the next state

    • Get maximum Q value of this next state based on all possible actions

    • Compute


    • Set the next state as the current state

  • End Do
    End For
    學習系數取值范圍是[0,1),如果值接近0,那么表示的是Agent更趨向于注重即時的環境反饋值。反之,則Agent更加考慮的是未來狀態的可能獎勵值。

思路

狀態轉換圖如下

初始化矩陣為

每一episode的過程為

  1. 隨機選擇初始初始狀態AF(05)
  2. 循環直到到達目標狀態
  • 將當前狀態可做的動作存為一個臨時列表
  • 從中隨機選擇一個動作,作為下一狀態
  • 根據公式計算新Q值
  • 更新Q矩陣

最終學習結果為

得到最優路徑 C->D->E->F

腳本使用方法

創造prim,將腳本附在上面。
迭代次數固定為10次,經測試可以學習出6*6矩陣的結果。
打印出最優路徑。

代碼及注釋

list Q;
list R = [-1,-1,-1,-1,0,-1,-1,-1,-1,0,-1,100,-1,-1,-1,0,-1,-1,-1,0,0,-1,0,-1,0,-1,-1,0,-1,100,-1,0,-1,-1,0,100];
float alpha = 0.8;

// 初始化Q矩陣全零
initQ() {
integer s;
integer a;
Q = [];
for (s = 0; s < 6; s++) {
for (a = 0; a < 6; a++) {
Q = Q + [0];
}
}
}

// 打印Q矩陣
reportQ() {
integer s;
for (s = 0; s < 6; s++)
{
llOwnerSay("State " + (string)s + ": " + llDumpList2String(llList2List(Q, s * 6, s * 6 + 5), ", "));
}
}

// 獲取特定狀態-動作對的Q值,即Q[s,a]
integer getQ(integer s, integer a) {
return llList2Integer(Q, s * 6 + a);
}

// 獲取特定狀態-動作對的R值,即R[s,a]
integer getR(integer s, integer a) {
return llList2Integer(R, s * 6 + a);
}

// 獲取MaxQ值
integer getMaxQ(integer s) {
integer a;
integer max = 0;
for (a = 0; a < 6; a++)
{
if(llList2Integer(Q, s * 6 + a)>max)
{
max = llList2Integer(Q, s * 6 + a);
}
}
return max;
}

// 更新特定狀態-動作對的Q值
setQ(integer s, integer a, integer newQ) {
integer index = s * 6 + a;
Q = llListReplaceList(Q, [newQ], index, index);
}

// 打印結果路徑
reportResult(integer s) {
integer currentS = s;
llOwnerSay((string)currentS + " -> ") ;
while(currentS!=5)
{
integer a;
integer max = 0;
integer nextS;
for (a = 0; a < 6; a++)
{
if(llList2Integer(Q, currentS * 6 + a)>max)
{
max = llList2Integer(Q, s * 6 + a);
nextS = a;
}
}
llOwnerSay((string)nextS + " -> " );
currentS = nextS;
}

}

default
{
state_entry()
{
initQ();
integer episodeCount = 10;
while(episodeCount--)
{
// 隨機選擇初始初始狀態0~5
integer currentS = (integer)llFrand(6);
integer nextS;
integer newQ;
// 循環直到到達目標
while(currentS!=5)
{
// 隨機選擇當前狀態可做的動作
integer a;
list actions = [];
for (a = 0; a < 6; a++)
{
if(getR(currentS,a)!=-1)
{
actions = actions + [a];
}
}
integer index = (integer)llFrand(llGetListLength(actions));
nextS = llList2Integer(actions,index);
// 根據公式
newQ = (integer)((float)getR(currentS,nextS) + alpha * (float)getMaxQ(nextS));
setQ(currentS,nextS,newQ);
currentS = nextS;
}

reportQ();
}
reportResult(2);
}
}
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,247評論 6 543
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,520評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,362評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,805評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,541評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,896評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,887評論 3 447
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,062評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,608評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,356評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,555評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,077評論 5 364
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,769評論 3 349
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,175評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,489評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,289評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,516評論 2 379

推薦閱讀更多精彩內容