若該樹的帶權(quán)路徑長(zhǎng)度(wpl)達(dá)到最小,稱這樣的二叉樹為最優(yōu)二叉樹。霍夫曼樹是帶權(quán)路徑長(zhǎng)度最短的樹,權(quán)值較大的節(jié)點(diǎn)離根較近。這樣說可能有些抽象,下面用圖來舉例說明
image.png
接下來實(shí)現(xiàn)霍夫曼樹的步驟:
1.先有一個(gè)有序數(shù)組arr(從小到大),例數(shù)組:{13,7,8,3,29,6,1},排序后為{1,3,6,7,8,13,29}
2.取最小的2個(gè)值,也就是arr[0],arr[1],并成一個(gè)樹的左節(jié)點(diǎn)和右節(jié)點(diǎn),他們的頭結(jié)點(diǎn)是arr[0]+arr[1]。
image.png
3.刪除arr[0]和arr[1],吧arr[0]+arr[1]的值加入到數(shù)組中,此時(shí)數(shù)組為{4,6,7,8,13,29},再次取出前2位數(shù),排序,以此內(nèi)推,最后數(shù)組中只剩下一個(gè)數(shù)即可。
下面代碼實(shí)現(xiàn):
public class HoffManTree {
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] arr = {13,7,8,3,29,6,1};
Node root = hoffMan(arr);
root.preOrder();
}
public static void preOrder(Node node) {
node.preOrder();
}
//返回一個(gè)霍夫曼樹
public static Node hoffMan(int[] arr) {
//先裝進(jìn)LIST中
List<Node> list = new ArrayList<Node>();
//把NODE裝進(jìn)LIST
for (int value : arr) {
list.add(new Node(value));
}
while(list.size()>1) {
//排序LIST
Collections.sort(list);
//取出最小值做左節(jié)點(diǎn)
Node leftNode = list.get(0);
//取出第二小值做右節(jié)點(diǎn)
Node rightNode = list.get(1);
//創(chuàng)建一個(gè)父節(jié)點(diǎn)
Node parent = new Node(leftNode.getValue()+rightNode.getValue());
parent.setLeft(leftNode);
parent.setRight(rightNode);
//刪除左右節(jié)點(diǎn)
list.remove(leftNode);
list.remove(rightNode);
//加入最新的節(jié)點(diǎn)
list.add(parent);
}
return list.get(0);
}
}
class Node implements Comparable<Node>{
private int value;//權(quán)值
private Node left;//左節(jié)點(diǎn)
private Node right;//右節(jié)點(diǎn)
public Node(int value) {
this.value = value;
}
//前序遍歷
public void preOrder() {
System.out.println(this);
if(this.left!=null) {
this.left.preOrder();
}
if(this.right!=null) {
this.right.preOrder();
}
}
public int getValue() {
return value;
}
public void setValue(int value) {
this.value = value;
}
public Node getLeft() {
return left;
}
public void setLeft(Node left) {
this.left = left;
}
public Node getRight() {
return right;
}
public void setRight(Node right) {
this.right = right;
}
@Override
public String toString() {
return "Node [value=" + value + "]";
}
//重寫compare方法
@Override
public int compareTo(Node o) {
//從小到大排序
return this.value-o.value;
}
}