10X單細胞軌跡分析(擬時分析)之cytotrace

hello,大家好,這次我們來分享一下做軌跡分析的軟件----CytoTRACE,文章在Single-cell transcriptional diversity is a hallmark of developmental potential,2020年1月表達于science,相當牛了,跟URD有一拼。當然,關于軌跡分析的方法之前分享過很多了,比如單細胞數(shù)據(jù)擬時分析之VIA(我的優(yōu)勢你們比不了),10X單細胞軌跡分析之回顧,擬時分析軟件Palantir,以及空間轉錄組軌跡分析的方法10X空間轉錄組的軌跡分析,今天我們來看看這個軟件有什么不同。

Abstract

Single-cell RNA sequencing (scRNA-seq) is a powerful approach for reconstructing cellular differentiation trajectories. However, inferring both the state and direction of differentiation is challenging(這個顯而易見). Here, we demonstrate a simple, yet robust, determinant(決定條件) of developmental potential—the number of expressed genes per cell(基因表達的數(shù)量)—and leverage this measure of transcriptional diversity to develop a computational framework(依據(jù)基因表達的數(shù)量進行發(fā)育軌跡的推斷??牛啊) (CytoTRACE) for predicting differentiation states from scRNA-seq data. When applied to diverse tissue types and organisms, CytoTRACE outperformed previous methods and nearly 19,000 annotated gene sets for resolving 52 experimentally determined developmental trajectories(背景倒是很豐厚). Additionally, it facilitated the identification of quiescent stem cells and revealed genes that contribute to breast tumorigenesis. This study thus establishes a key RNA-based feature of developmental potential and a platform for delineation of cellular hierarchies.(看來這個方法有很多值得一看的地方)。

introduction

Inmulticellular organisms, tissues are hierarchically organized into distinct cell types and cellular stateswith intrinsic differences in function and developmental potential。當然,目前已經(jīng)有了很多新的方法,但是 Though powerful, these technologies cannot be applied to human tissues in vivo and generally require prior knowledge of cell type–specific genetic markers(做軌跡分析必須先進行細胞定義,否則都是耍流氓)。These limitations have made it difficult to study the developmental organization of primary human tissues under physiological and pathological conditions。(不知道大家擬時分析的時候,研究的有多深)。
Single-cell RNA-sequencing (scRNA-seq) has emerged as a promising approach to study cellular differentiation trajectories at high resolution in primary tissue specimens(單細胞確實是一個劃時代的技術),目前大多數(shù)軌跡分析的軟件需要
(1)a priori knowledge of the starting point (and thus, direction) of the inferred biological process(先驗知識,不進行細胞定義直接做軌跡分析就是耍流氓)。
(2)the presence of intermediate cell states to reconstruct the trajectory(含有細胞分化的中間態(tài),理論上是這樣)。
These requirements can be challenging to satisfy in certain contexts, such as human cancer development研究腫瘤樣本單細胞數(shù)據(jù)的童鞋是不是深有體會?)。
目前的方法還有一個缺點
with existing in silico approaches, it is difficult to distinguish quiescent(靜止的) (noncycling) adult stem cells that have long-term regenerative potential frommore specialized cells(這種情況其實在我們研究單細胞數(shù)據(jù)的情況下非常少見),而且gene expression–basedmodels utility across diverse developmental systems and single-cell sequencing technologies is still unclear.
Here,we systematically evaluated RNA-based features, including nearly 19,000 annotated gene sets, to identify factors that accurately predict cellular differentiation status independently of tissue type, species, and platform.(開始夸自己的軟件了),我們來看一下這個軟件的理論和運用吧

Result1 RNA-based correlates of single-cell differentiation states(最關鍵的地方

Our initial goal was to identify robust, RNAbased determinants of developmental potential potential without the need for a priori knowledge of developmental direction or intermediate cell states marking cell fate transitions.(沒有先驗知識的前提下識別發(fā)育的方向和細胞的轉變),Using scRNA-seq data, we evaluated ~19,000 potential correlates of cell potency, including all available gene sets in the Molecular Signatures Database。896 gene sets covering transcription factor binding sites from ENCODE (17) and ChEA (18), an mRNA expression–derived stemness index (mRNAsi) (15), and three computational techniques that infer stemness as a measure of transcriptional entropy這個地方了解一下就可以了),We also explored the utility of “gene counts,” or the number of detectably expressed genes
per cell. Although anecdotally observed to correlate with differentiation status in a limited number of settings(這也是文章的重點,基因數(shù)量和發(fā)育的關系),the reliability of this association and whether it reflects a general property of cellular ontogeny are unknown.
To assess these RNA-based features, we compiled a training cohort consisting of nine gold standard scRNA-seq datasets with experimentally confirmed differentiation trajectories.These datasets were selected to prioritize commonly used benchmarking datasets from earlier studies and to ensure a broad sampling of developmental states from the mammalian zygote to terminally differentiated cells這才是真正的發(fā)育軌跡)。Overall, the training cohort encompassed 3174 single cells spanning 49 phenotypes, six biological systems, and three scRNA-seq platforms(種類很齊全)。To evaluate performance, we used Spearman correlation to compare each RNA-based feature, averaged by phenotype, against known differentiation states。We then averaged the results across the nine training datasets to yield a final score and rank for every feature(相關性檢驗)。
This systematic screen revealedmany known and unexpected correlates of differentiation status

圖片.png

However, one feature in particular showed notable performance: the number of detectably expressed genes per cell (gene counts)(基因數(shù)量的特征非常明顯)。這個地方給的理論在于干細胞,多能干細胞表達的基因數(shù)會比較多,而成熟的細胞類型表達的基因數(shù)量就會相對少Pluripotency genes對這一類基因感興趣的同學可以查一下), by contrast, showed an arc-like pattern early in human embryogenesis that was characterized by progressively increasing expression until the emergence of embryonic stem cells, followed by decreasing expression(這個發(fā)現(xiàn)倒是很有意思)。
圖片.png

這個地方,總結一下,分化能力強的細胞基因表達數(shù)相對很多,而多能性基因卻呈現(xiàn)弧形的走向
These findings suggested that gene counts might extend beyond isolated experimental systems to recapitulate the full spectrum of developmental potential.接下來用小鼠的數(shù)據(jù)進行了驗證
圖片.png

和之前的結果一致,相關性非常高,其他物種也檢驗到了相同的結果
圖片.png
,suggesting that it is a general feature of cellular ontogeny.

接下來是對染色體可及性和發(fā)育關系的研究
tested whether single-cell gene counts are ultimately a surrogate for global chromatin accessibility, which has been shown to decrease with differentiation in certain contexts,genome-wide chromatin accessibility was observed to progressively decrease with differentiation of hESCs into paraxial mesoderm and lateral mesoderm lineages這個結果都能猜到

圖片.png

We observed strong concordance between thenumber of accessible peaks and the mean number of detectably expressed genes per phenotype
圖片.png

看來這部分結果具有共性

Result2 Development of CytoTRACE

The number of expressed genes per cell generally showed consistent performance with respect to key technical parameters and was generally correlated with mRNA content(這個自然),However, in some datasets, such as that for in vitro differentiation of hESCs into the gastrulation layers, the number of expressed genes per cell exhibited considerable intraphenotypic variation(表型的部分其實單細胞用到的相對還少一點,但是ATAC的內容也相當重要

圖片.png

看來軌跡分析與基因表達的數(shù)量關聯(lián)性還是很強
we reasoned that genes whose expression patterns correlate with gene counts might better capture differentiation states. Indeed, by simply averaging the expression levels of genes that were most highly correlated with gene counts in each dataset(這個已經(jīng)無數(shù)次被驗證了)。the resulting dataset-specific
gene counts signature (GCS) became the topperforming measure in the screen, outranking every predefined gene set and computational tool that we assessed
圖片.png

GCS, like gene counts, is inherently insensitive to dropout events, is agnostic to prior knowledge of developmentally regulated genes,(也就是說對技術缺陷和先驗知識以來程度較小),and is not solely attributable to multilineage priming or a known molecular signature。

Result3 Performance evaluation across tissues, species, and platforms(多種來源的數(shù)據(jù),這部分我們簡單看一下

When assessed at the single-cell level, CytoTRACE outperformed all evaluated RNAbased features in the validation cohort,


圖片.png

achieving a substantial gain in performance over the second-highest-ranking approach


圖片.png

Similar improvements were observed acrossmany complex systems, including bone marrow differentiation


圖片.png

In addition, CytoTRACE results were positively correlated with the direction of differentiation in 88% of datasets(已知發(fā)育軌跡的數(shù)據(jù)來驗證軟件的準確性,當然都不錯)。
Moreover, no significant biases in performance were observed in relation to tissue type, species, the number of cells analyzed, time series experiments versus snapshots of developmental states, or
plate-based versus droplet-based technologies(bias很小,這個不錯)。
接下來還和RNA velocyto的結果進行比較,當然,cytoTrace的結果相當不錯

圖片.png

作者推斷cytoTRACE更準確的原因是This was likely due to the short mRNA half-lives and developmental time scales assumed for the RNA velocity model。
后面還有對多樣本批次效應的驗證,但是我們現(xiàn)在一般都會事先去除批次效應,然后再去做軌跡分析,方法之間還是要靈活運用

Result 4 Stem cell–related genes and hierarchies

圖片.png

這個地方提到了關鍵的一點,CytoTRACE可以識別準確的起點,講道理,真實的情況我是不信的,這部分結果簡單了解一下就可以,真正做軌跡分析的時候一定要進行人為監(jiān)督

Result5 Application to neoplastic disease

圖片.png

還是要識別細胞類型,我真的不信這個軟件能在純數(shù)據(jù)的情況下,識別發(fā)育起點

接下來看看示例代碼

Running CytoTRACE

Load CytoTRACE in R with library(CytoTRACE). The package contains the following contents:

Cytotrace(): function to run CytoTRACE on a custom scRNA-seq dataset
iCytoTRACE: function to run CytoTRACE across multiple, heterogeneous scRNA-seq batches/dataset
plotCytoTRACE: function to generate 2D visualizations of CytoTRACE, phenotypes, and gene expression
Two bone marrow differentiation scRNA-seq datasets (marrow_10x_expr and marrow_plate_expr) with corresponding phenotype labels (marrow_10x_pheno and marrow_plate_pheno)

Example I: Run CytoTRACE on a custom scRNA-seq dataset

Use the bone marrow 10x scRNA-seq dataset to run CytoTRACE

results <- CytoTRACE(marrow_10x_expr)

CytoTRACE will automatically run on fast-mode, a subsampling approach used to reduce runtime and memory usage, when the number of cells in the dataset exceeds 3,000. Users can additionally multi-thread using 'ncores' (default = 1) or indicate subsampling size using 'subsamplingsize' (default = 1,000 cells). Run the following dataset on fast mode using 8 cores and subsample size of 1,000.

results <- CytoTRACE(marrow_10x_expr, ncores = 8, subsamplesize = 1000)

The ouput is a list object containing numeric values for CytoTRACE (values ranging from 0 (more differentiated) to 1 (less differentiated)), ranked CytoTRACE, GCS, and gene counts, a numeric vector of the Pearson correlation between each gene and CytoTRACE, a numeric vector of the Pearson correlation between each gene and gene counts, the IDs of filtered cells, and a normalized gene expression table (see package documentation for more details).
Example II: Run iCytoTRACE on multiple scRNA-seq batches/datasets

Run iCytoTRACE on a list containing two bone marrow scRNA-seq datasets profiled on different platforms, 10x and Smart-seq2

datasets <- list(marrow_10x_expr, marrow_plate_expr)
results <- iCytoTRACE(datasets)

The ouput is a list object containing numeric values for the merged CytoTRACE (values ranging from 0 (more differentiated) to 1 (less differentiated)), ranked CytoTRACE, GCS, gene counts, the Scanorama-corrected gene expression matrix, the merged low dimensional embedding, and the IDs of filtered cells (see package documentation for more details).
Example III: Plot CytoTRACE and iCytoTRACE results
Visualizing CytoTRACE results

Generate 2D plots and tables to visualize CytoTRACE, known phenotypes, and gene expression. The current implementation uses t-SNE for dimensional reduction but users can also input their own embeddings. At minimum, the plotCytoTRACE function takes as input a list object generated by either the CytoTRACE or iCytoTRACE functions. Users can also optionally provide phenotype labels or gene names to generate additional plots. Boxplots of CytoTRACE by phenotype labels are automatically generated when phenotype labels are provided.

plotCytoTRACE(results, phenotype = marrow_10x_pheno, gene = "Kit")

The function saves two files to disk: -a pdf of 2D embedded plots colored by CytoTRACE, and, if provided, phenotype labels, and gene expression. -a tab-delimited text file containing a table of CytoTRACE values t-SNE embeddings, and, if provided, phenotype labels and gene expression values.
Visualizing genes associated with CytoTRACE

Generate a bar plot to visualize genes associated with CytoTRACE. At minimum, the plotCytoGenes function takes as input a list object generated by either the CytoTRACE or iCytoTRACE functions. Users can also indicate the number of genes and colors to display.

plotCytoGenes(results, numOfGenes = 10)

The function saves one file to disk:

a pdf of bar plots indicating the genes associated with least and most differentiated cells based on correlation with CytoTRACE.

參考網(wǎng)址在CytoTRCAE

代碼相當簡單,大家自己試一下吧,不過從結果看,人為監(jiān)督必不可少

生活很好,有你更好

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯(lián)系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發(fā)布,文章內容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務。
禁止轉載,如需轉載請通過簡信或評論聯(lián)系作者。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,619評論 6 539
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 99,155評論 3 425
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 177,635評論 0 382
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,539評論 1 316
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,255評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,646評論 1 326
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,655評論 3 444
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,838評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 49,399評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,146評論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,338評論 1 372
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,893評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 44,565評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,983評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,257評論 1 292
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,059評論 3 397
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,296評論 2 376

推薦閱讀更多精彩內容