2,5
末尾數(shù)是偶數(shù),因為10a+b
3,9
所有位相加可以被3整除,因為10a+b=(9+1)*a+b
4,25
最后兩位可以整除,因為100=4*25
8,125
最后三位可以整除,因為1000=8*125
6
同時被2和3整除,各位數(shù)字之和是3的倍數(shù)的偶數(shù)
7,11,13,9
去掉最后3位的數(shù)-最后3位的數(shù)能被整除
證明:利用1001=7x11x13的特性
1000a+b
=(1001-1)a+b
=1001a-(a-b)
同樣適用于9
11
奇數(shù)位和和偶數(shù)位和的差能被11整除
證明:
注意到下列事實:
一 99,9999,……,偶數(shù)位純9數(shù)必能被11整除;
二 1001,100001,……,中間的0的個數(shù)為偶數(shù)的10……01必能被11整除。
下面證明,為易懂,以3位數(shù)為例。
10000a+1000b+100c+10d+e
=(9999a+a)+(1001b-b)+(99c+c)+(11d-d)+e
=9999a+1001b+99c+11d+[(a+c+e)-(b+d)].
因為9999a+1001b+99c+11d能被11整除,
所以,只要(a+c+e)-(b+d)能被11整除,原五位數(shù)就能被11整除,分成2位一組,各組數(shù)相加能整除
證明:以4位數(shù)為例
100a+b
=(99+1)a+b
=99a+(a+b)
摘錄
整除規(guī)則第一條(1):任何數(shù)都能被1整除。
整除規(guī)則第二條(2):個位上是2、4、6、8、0的數(shù)都能被2整除。
整除規(guī)則第三條(3):每一位上數(shù)字之和能被3整除,那么這個數(shù)就能被3整除。
整除規(guī)則第四條(4):最后兩位能被4整除的數(shù),這個數(shù)就能被4整除。
整除規(guī)則第五條(5):個位上是0或5的數(shù)都能被5整除。
整除規(guī)則第六條(6):一個數(shù)只要能同時被2和3整除,那么這個數(shù)就能被6整除。
整除規(guī)則第七條(7):把個位數(shù)字截去,再從余下的數(shù)中,減去個位數(shù)的2倍,差是7的倍數(shù),則原數(shù)能被7整除。
整除規(guī)則第八條(8):最后三位能被8整除的數(shù),這個數(shù)就能被8整除。
整除規(guī)則第九條(9):每一位上數(shù)字之和能被9整除,那么這個數(shù)就能被9整除。
整除規(guī)則第十條(10): 若一個整數(shù)的末位是0,則這個數(shù)能被10整除
整除規(guī)則第十一條(11):將一個數(shù)從右往左數(shù),將奇數(shù)位上的數(shù)與偶數(shù)位上的數(shù)分別相加,然后將兩個數(shù)的和相減,如果差值能被11整除(包括差值為0)則原數(shù)可以被11整除。
整除規(guī)則第十二條(12):若一個整數(shù)能被3和4整除,則這個數(shù)能被12整除。
整除規(guī)則第十三條(13):若一個整數(shù)的個位數(shù)字截去,再從余下的數(shù)中,加上個位數(shù)的4倍,如果和是13的倍數(shù),則原數(shù)能被13整除。如果差太大或心算不易看出是否13的倍數(shù),就需要繼續(xù)上述「截尾、倍大、相加、驗差」的過程,直到能清楚判斷為止。
整除規(guī)則第十四條(14):a 若一個整數(shù)的個位數(shù)字截去,再從余下的數(shù)中,減去個位數(shù)的5倍,如果差是17的倍數(shù),則原數(shù)能被17整除。如果差太大或心算不易看出是否17的倍數(shù),就需要繼續(xù)上述「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止。b 若一個整數(shù)的末三位與3倍的前面的隔出數(shù)的差能被17整除,則這個數(shù)能被17整除。
整除規(guī)則第十五條(15):a 若一個整數(shù)的個位數(shù)字截去,再從余下的數(shù)中,加上個位數(shù)的2倍,如果差是19的倍數(shù),則原數(shù)能被19整除。如果差太大或心算不易看出是否19的倍數(shù),就需要繼續(xù)上述「截尾、倍大、相加、驗差」的過程,直到能清楚判斷為止。b 若一個整數(shù)的末三位與7倍的前面的隔出數(shù)的差能被19整除,則這個數(shù)能被19整除。
整除規(guī)則第十六條(16):若一個整數(shù)的末四位與前面5倍的隔出數(shù)的差能被23整除,則這個數(shù)能被23整除
整除規(guī)則第十七條(17):若一個整數(shù)的末四位與前面5倍的隔出數(shù)的差能被29整除,則這個數(shù)能被29整除
整除規(guī)則第十八條(18):若一個整數(shù)的末四位與前面的數(shù)的差能被73整除,則這個數(shù)能被73整除
整除規(guī)則第十九條(19):若一個整數(shù)的末四位與前面的數(shù)的差能被137整除,則這個數(shù)能被137整除
整除規(guī)則第二十條(20):若一個整數(shù)的末四位與前面5倍的隔出數(shù)的差能被23(或29)整除,則這個數(shù)能被23整除
整除規(guī)則第二十一條(21):若一個整數(shù)的末5位與前面的數(shù)的差能被9091整除,則這個數(shù)能被9091整除
整除規(guī)則第二十二條(22):(9的無敵亂切)把一個整數(shù)分成若干段之和能被9整除,則這個數(shù)能被9整除
整除規(guī)則第二十三條(23):(11的無敵亂切)把一個整數(shù)分成若干段,每段的末尾為奇數(shù)位加,偶數(shù)位減,結(jié)果能被11整除,則這個數(shù)能被11整除
整除規(guī)則第二十四條(24):(a)若一個整數(shù)的末4位與前面的數(shù)的和能被101整除,則這個數(shù)能被101整除
(b)若一個整數(shù)的末2位與前面的數(shù)的差能被101整除,則這個數(shù)能被101整除
切記:0 不能做除數(shù)!