SNP在染色體上的密度分布圖

? ? ? ?有兩種方法,先看比較簡單的一種:

library(CMplot)
mydata<-read.table("snp_density.csv",header=TRUE,sep=",")
head(mydata)
# snp         chr       pos
# snp1_1    1        2041
# snp1_2    1        2062
# snp1_3    1        2190
CMplot(mydata,plot.type="d",bin.size=1e6,col=c("darkgreen","yellow", "red"),file="jpg",memo="snp_density",dpi=300) 

結果:


SNP_Density.Index_snp_density.jpg

第二種方法就比較復雜了,需要準備兩個文件:
一個是包含染色體長度的文件chr_length.txt,格式如下:

chr start   end
Chr1    0   43270923
Chr2    0   35937250
Chr3    0   36413819
Chr4    0   35502694
Chr5    0   29958434
Chr6    0   31248787
Chr7    0   29697621
Chr8    0   28443022

一個是包含各個基因的起始位置的文件gene_length.txt:

chr start   end
Chr1    2903    2904
Chr1    11218   11219
Chr1    12648   12649
Chr1    16292   16293
Chr1    22841   22842
Chr1    27136   27137
Chr1    29818   29819

然后畫圖:

source("http://bioconductor.org/biocLite.R")
biocLite("gtrellis")
library(gtrellis)
library(RColorBrewer)
library(circlize)
library(ComplexHeatmap)
bed1<-read.table("chr_length.txt",head=T,sep='\t')
bed2<-read.table("gene_length.txt",head=F,sep='\t')
gene_density = genomicDensity(bed2,window.size = 1e6)
col_fun = colorRamp2(seq(0, max(gene_density[[4]]), length = 11),rev(brewer.pal(10, "RdYlBu")))
cm = ColorMapping(col_fun = col_fun)
lgd = color_mapping_legend(cm, plot = TRUE, title = "",color_bar="continuous")
gtrellis_layout(bed1,byrow = FALSE,ncol = 1,xpadding = c(0.1, 0),
                gap = unit(2, "mm"),border = FALSE,asist_ticks=FALSE,
                track_axis = FALSE,legend=lgd)
add_heatmap_track(gene_density, gene_density[[4]], fill = col_fun,track=1)
add_track(track = 1, clip = FALSE, panel_fun = function(gr) {
          chr = get_cell_meta_data("name")
          if(chr == "Chr12") {
                grid.lines(get_cell_meta_data("xlim"), 
                           unit(c(0, 0), "npc"),
                          default.units = "native") }
          grid.text(chr,x =0.02, y = 0.38, just = c("left", "bottom"))
                                    })
捕獲.PNG

下面這個方法其實也可以用來畫拷貝數變異的密度圖,只需要把start和end變成范圍即可。

?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,563評論 6 544
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,694評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,672評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,965評論 1 318
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,690評論 6 413
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 56,019評論 1 329
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 44,013評論 3 449
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,188評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,718評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,438評論 3 360
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,667評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,149評論 5 365
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,845評論 3 351
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,252評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,590評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,384評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,635評論 2 380

推薦閱讀更多精彩內容