Spark整合ElasticSearch

spark整合elasticsearch兩種方式

1.自己生成_id等元數據
2.使用ES默認生成

引入對應依賴

<dependency>
  <groupId>org.elasticsearch</groupId>
  <artifactId>elasticsearch-spark-13_2.10</artifactId>
  <version>5.0.1</version>
</dependency>

生成元數據方式

import org.apache.spark.{SparkConf, SparkContext}
import org.elasticsearch.spark._
import utils.PropertiesUtils

import scala.collection.immutable
import scala.collection.mutable.ListBuffer
object Spark_ES_WithMeta {

  val buffer = new ListBuffer[Tuple2[String,immutable.Map[String,String]]]
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("Custmer_Statistics").setMaster("local[2]")
    conf.set("es.nodes","rmhadoop01,rmhadoop02,rmhadoop03");
    conf.set("es.port","9200");
    conf.set("es.index.auto.create", "true");
    val sc = new SparkContext(conf)
    //讀取本地文件

    val result = sc.textFile("C:/work/ideabench/SparkSQL/data/es/gd_py_corp_sharehd_info.txt")
      .map(_.split("\\t"))
      .foreach(d =>{
          if(PropertiesUtils.getStringByKey("gd_py_corp_sharehd_info").equals("one2many")){

            val map = Map("id"->d(0),
              "batch_seq_num"->d(1),
              "name"->d(2),
              "contributiveFund"->d(3),
              "contributivePercent"->d(4),
              "currency"->d(5),
              "contributiveDate"->d(6),
              "corp_basic_info_id"->d(7),
              "query_time"->d(8)
            )

            buffer.append((d(0),map))
            //buffer

          }else if(PropertiesUtils.getStringByKey("gd_py_corp_sharehd_info").equals("one2one")){
            //Map(d(1) ->gd_py_corp_sharehd_info(d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7), d(8)))
          }

      } )

    sc.makeRDD(buffer).saveToEsWithMeta("spark/guofei_gd_py_corp_sharehd_info")
  }



  /**
    * 使用模板類描述表元數據信息
    *
    */
  case class gd_py_corp_sharehd_info(id:String,batch_seq_num:String,
                                     name:String,contributiveFund:String,
                                     contributivePercent:String,currency:String,
                                     contributiveDate:String,corp_basic_info_id:String,
                                     query_time:String)

}
ES-UI界面
ES.png

使用ES默認元數據方式

import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
import org.elasticsearch.spark.sql._
object SparkSQL_ES {

  /**
    * 使用模板類描述表元數據信息
    * 
    */
  case class gd_py_corp_sharehd_info(id:String,batch_seq_num:String,
                                     name:String,contributiveFund:String,
                                     contributivePercent:String,currency:String,
                                     contributiveDate:String,corp_basic_info_id:String,
                                     query_time:String)

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("Custmer_Statistics").setMaster("local[2]")
    conf.set("es.nodes","192.168.20.128");
    conf.set("es.port","9200");
    conf.set("es.index.auto.create", "true");
    val sc = new SparkContext(conf)
    val sqlContext = new SQLContext(sc)
    //RDD隱式轉換成DataFrame
    import sqlContext.implicits._
    //讀取本地文件
    val gd_py_corp_sharehd_infoDF = sc.textFile("C:/work/ideabench/SparkSQL/data/es/gd_py_corp_sharehd_info.txt")
      .map(_.split("\\t"))
      .map(d => gd_py_corp_sharehd_info(d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7), d(8)))
      .toDF()

    //注冊表
    gd_py_corp_sharehd_infoDF.registerTempTable("gd_py_corp_sharehd_info")

    /**
      * 
      */
    val result = sqlContext
      .sql("select * from gd_py_corp_sharehd_info limit 10")
      .toDF()

    result.saveToEs("spark/gd_py_corp_sharehd_info")
  }

}

參考文章

官網:https://www.elastic.co/guide/en/elasticsearch/hadoop/current/spark.html

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,565評論 6 539
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,115評論 3 423
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 177,577評論 0 382
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,514評論 1 316
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,234評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,621評論 1 326
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,641評論 3 444
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,822評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,380評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,128評論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,319評論 1 371
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,879評論 5 362
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,548評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,970評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,229評論 1 291
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,048評論 3 397
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,285評論 2 376

推薦閱讀更多精彩內容