軌跡分析系列:
- 單細胞之軌跡分析-1:RNA velocity
- 單細胞之軌跡分析-2:monocle2 原理解讀+實操
- 單細胞之軌跡分析-3:monocle3
- 單細胞之軌跡分析-4:scVelo
- 單細胞之軌跡分析-5:slingshot
- 單細胞之軌跡分析-6:velocyto.R+Seurat
一般要去計算RNA velocity的時候,是已經預先處理過數據了,比如做過了降維,聚類,差異分析等。因此,做RNA velocity的時候,考慮的經常是怎么把之前的結果和RNA velocity的結果合并展示。而不是對同一份數據使用RNA velocity重新做一次降維聚類。
思路:把velocyto生成的loom文件讀取之后,和Seurat分析過的數據整合在一起,然后再導出為loom格式,最后用scVelo做velocity分析。
1. Introduction
需要用到的軟件:
- scVelo (For RNA Velocity)
- Velocyto or Kallisto Bustools (To produce our initial RNA Velocity Object)
- Anndata (For manipulation of our RNA Velocity object)
- Seurat
- Samtools -- optional (Velocyto will run Samtools sort on unsorted .bam)
2. 生成loom文件
loom文件是從fastq/loom文件中得到的
pip install git+https://github.com/pachterlab/kb_python@devel
kb ref -i index.idx -g t2g.txt -f1 cdna.fa -f2 intron.fa -c1 cdna_t2c.txt -c2 intron_t2c.txt --workflow lamanno -n 4 \
fasta.fa \
gtf.gtf
kb count -i transcriptome.idx -g t2g.txt -x 10xv2 --workflow lamanno --loom -c1 cdna_t2c.txt -c2 intron_t2c.txt read_1.fastq.gz read_2.fastq.gz
#Download dependencies first
conda install numpy scipy cython numba matplotlib scikit-learn h5py click
pip install velocyto
velocyto run -b filtered_barcodes.tsv -o output_path -m repeat_msk_srt.gtf bam_file.bam annotation.gtf
3. 讀取Seurat對象和loom文件
需要先轉換成h5ad格式,參考Seurat對象、SingleCellExperiment對象和scanpy對象的轉化
#數據轉換
library(scater)
library(Seurat)
library(SeuratData)
#remotes::install_github("mojaveazure/seurat-disk")
library(SeuratDisk)
library(patchwork)
pbmc <- readRDS("pbmc.rds")
SaveH5Seurat(pbmc, filename = "pbmc.h5Seurat")
Convert("pbmc.h5Seurat", dest = "h5ad")
讀取數據Seurat整合對象
import anndata
import scvelo as scv
import pandas as pd
import numpy as np
import matplotlib as plt
import scanpy as sc
%load_ext rpy2.ipython
adata=sc.read_h5ad('pbmc.h5ad')
adata.obs.seurat_clusters=adata.obs.seurat_clusters.astype('category')
讀取每個樣品的loom文件
data1 = anndata.read_loom("data1.loom")
data2 = anndata.read_loom("data2.loom")
data3 = anndata.read_loom("data3.loom")
4. 根據Seurat對象的細胞ID,修改loom文件細胞ID
barcodes=[bc.split(':')[1] for bc in data1.obs.index.tolist()]
barcodes=[bc[0:len(bc)-1]+ '-1_1' for bc in barcodes]
data1.obs.index=barcodes
data1.var_names_make_unique()
data2和data3的操作相同
5. 整合loom文件
ldata=data1.concatenate([data2,data3])
6. 整合loom文件和metadata
adata=scv.utils.merge(adata,ldata)
畫個umap圖檢查一下
sc.pl.umap(adata, color='celltype', frameon=False, legend_loc='on data', title='', save='_celltypes.pdf')
為不同的細胞類型、樣本、細胞類群等設置顏色(可選)
(對應的obs名,然后跟“_colors”)
adata.uns['Group_colors'] = np.array(["#66c2a5", "#8da0cb", "#e78ac3"])
adata.uns['celltype_colors'] = np.array([""#33a02c", "#b2df8a", "#a6cee3", "#fb9a99", "#cab2d6"])
7. scVelo分析
參考scVelo
8. 提取亞群分析
cur_celltypes = ['CD4T', 'CD8T, 'Treg', 'Tnaive']
adata_subset = adata[adata.obs['celltype'].isin(cur_celltypes)]
sc.pl.umap(adata_subset, color=['celltype', 'condition'], frameon=False, title=['', ''])
sc.pp.neighbors(adata_subset, n_neighbors=15, use_rep='X_pca')
# pre-process
scv.pp.filter_and_normalize(adata_subset)
scv.pp.moments(adata_subset)
后續分析同scVelo
參考:
scvelo github網站:https://github.com/theislab/scvelo
scvelo官方文檔:https://scvelo.readthedocs.io/index.html
Seurat to RNA-Velocity教程:https://github.com/basilkhuder/Seurat-to-RNA-Velocity#multiple-sample-integration
scvelo實戰教程:
https://smorabit.github.io/tutorials/8_velocyto/
RNA velocity:scVelo 應用