flume-kafka-spark streaming(pyspark)-hdfs實時日志實時計算

學習了差不多一個星期,終于把flume-kafka-spark streaming貫通了,直接上流程圖:


至于為什么要這樣,當然是方便咯
參考某博客

一、環境部署

hadoop集群2.7.1
zookeerper集群
kafka集群:kafka_2.11-0.10.0.0
spark集群:spark-2.0.1-bin-hadoop2.7.tgz
flume1.7.0
環境搭建可參考我前面幾篇文章。不再贅述
三臺機器:master,slave1,slave2

二、配置flume

sink為kafka
source你隨意

a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = 192.168.31.131
a1.sources.r1.channels = c1
# Describe the sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.topic = test5
a1.sinks.k1.brokerList = 192.168.31.131:9092
a1.sinks.k1.requiredAcks = 1
a1.sinks.k1.batchSize = 20
a1.sinks.k1.channel = c1
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
#yi bai tiao jiu submit

三、編程,KafkaWordCount.py

編寫spark steaming 代碼,讀取kafka流數據,并統計詞頻


# -*- coding: UTF-8 -*-
 ###spark streaming&&kafka
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils

sc=SparkContext("local[2]","KafkaWordCount")
#處理時間間隔為1s
ssc=StreamingContext(sc,2)
zookeeper="192.168.31.131:2181,192.168.31.132:2181,192.168.31.133:2181"
#打開一個TCP socket 地址 和 端口號
topic={"test5":0,"test5":1,"test5":2}
groupid="test-consumer-group"
lines = KafkaUtils.createStream(ssc, zookeeper,groupid,topic)
lines1=lines.map(lambda x:x[1])

#對1s內收到的字符串進行分割
words=lines1.flatMap(lambda line:line.split(" "))

#映射為(word,1)元祖
pairs=words.map(lambda word:(word,1))

wordcounts=pairs.reduceByKey(lambda x,y:x+y)

#輸出文件,前綴+自動加日期
wordcounts.saveAsTextFiles("/tmp/fkafka")

wordcounts.pprint()

#啟動spark streaming應用
ssc.start()
#等待計算終止
ssc.awaitTermination()

四、啟動環境

1.啟動hadoop集群
start-all.sh
2.啟動spark集群
start-master.sh
start-slaves.sh
3.啟動zookeeper集群

在三臺機器下均輸入以下命令

zkServer.sh start
4.啟動kafka集群

在三臺機器下均輸入以下命令

kafka-server-start.sh -daemon ../config/server.properties
5.jps查看進程

master:


slave1與slave2一樣:


確保所有進程啟動

6.創建kafka topic

kafka-topics.sh --create --zookeeper 192.168.31.131:2181,192.168.31.132:2181,192.168.31.133:2181 --replication-factor 3 --partitions 3 --topic test5

7.啟動flume agent
flume-ng agent --conf flume/conf/  -f /home/cms/flume/conf/flume-conf.properties -n a1 -Dflume.root.logger=INFO,console

五、測試

1.運行KafkaWordCount.py

在master下
運行

spark-submit --jars kafka/libs/spark-streaming-kafka-0-8-assembly_2.11-2.0.1.jar KafkaWordCount.py 2> error.txt
2.發送數據
echo "hello'\t'word" | nc 192.168.31.131 5140

3.觀察終端輸出

六、hdfs上查看輸出

hadoop fs -ls /tmp/fkafka*

參考文檔
(flume-kafka- spark streaming(pyspark) - redis 實時日志收集實時計算)[http://blog.csdn.net/zhong_han_jun/article/details/50721736]

http://spark.apache.org/docs/latest/streaming-kafka-0-8-integration.html

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,885評論 6 541
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,312評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 177,993評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,667評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,410評論 6 411
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,778評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,775評論 3 446
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,955評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,521評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,266評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,468評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,998評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,696評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,095評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,385評論 1 294
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,193評論 3 398
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,431評論 2 378

推薦閱讀更多精彩內容