本篇對于Python操作MySQL主要使用兩種方式:
- 原生模塊 pymsql
- ORM框架 SQLAchemy
一、pymysql
-
下載安裝
pip install pymysql
-
下載安裝
- 2.使用操作
------1.執行SQL
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
# 創建連接
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
# 創建游標
cursor = conn.cursor()
# 執行SQL,并返回收影響行數
effect_row = cursor.execute("update hosts set host = '1.1.1.2'")
# 執行SQL,并返回受影響行數
#effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,))
# 執行SQL,并返回受影響行數
#effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
# 提交,不然無法保存新建或者修改的數據
conn.commit()
# 關閉游標
cursor.close()
# 關閉連接
conn.close()
------2.獲取新創建數據自增ID
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
conn.commit()
cursor.close()
conn.close()
# 獲取最新自增ID
new_id = cursor.lastrowid
------3.獲取查詢數據
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.execute("select * from hosts")
# 獲取第一行數據
row_1 = cursor.fetchone()
# 獲取前n行數據
# row_2 = cursor.fetchmany(3)
# 獲取所有數據
# row_3 = cursor.fetchall()
conn.commit()
cursor.close()
conn.close()
注:在fetch數據時按照順序進行,可以使用cursor.scroll(num,mode)來移動游標位置,如:
- cursor.scroll(1,mode='relative') # 相對當前位置移動
- cursor.scroll(2,mode='absolute') # 相對絕對位置移動
------ 4.fetch數據類型
關于默認獲取的數據是元祖類型,如果想要或者字典類型的數據,即:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
# 游標設置為字典類型
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
r = cursor.execute("call p1()")
result = cursor.fetchone()
conn.commit()
cursor.close()
conn.close()
二、SQLAchemy
SQLAlchemy是Python編程語言下的一款ORM框架,該框架建立在數據庫API之上,使用關系對象映射進行數據庫操作,簡言之便是:將對象轉換成SQL,然后使用數據API執行SQL并獲取執行結果
安裝:pip install SQLAlchemy
image.png
SQLAlchemy本身無法操作數據庫,其必須以來pymsql等第三方插件,Dialect用于和數據API進行交流,根據配置文件的不同調用不同的數據庫API,從而實現對數據庫的操作,如:
MySQL-Python
mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
pymysql
mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
MySQL-Connector
mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
cx_Oracle
oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
更多詳見:http://docs.sqlalchemy.org/en/latest/dialects/index.html
1、SQLAchemy的基本使用
- 創建表
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String
engine = create_engine("mysql+pymysql://root:123456@localhost/testdb",
encoding='utf-8', echo=True)
Base = declarative_base() #生成orm基類
class User(Base):
__tablename__ = 'user' #表名
id = Column(Integer, primary_key=True)
name = Column(String(32))
password = Column(String(64))
Base.metadata.create_all(engine) #創建表結構
除上面的創建之外,還有一種創建表的方式,雖不常用,但還是看看吧
from sqlalchemy import Table, MetaData, Column, Integer, String, ForeignKey
from sqlalchemy.orm import mapper
metadata = MetaData()
user = Table('user', metadata,
Column('id', Integer, primary_key=True),
Column('name', String(50)),
Column('fullname', String(50)),
Column('password', String(12))
)
class User(object):
def __init__(self, name, fullname, password):
self.name = name
self.fullname = fullname
self.password = password
mapper(User, user)
#the table metadata is created separately with the Table construct,
then associated with the User class via the mapper() function
事實上,我們用第一種方式創建的表就是基于第2種方式的再封裝。
- 新增
from sqlalchemy.orm import sessionmaker, relationship
Session_class = sessionmaker(bind=engine)
#創建與數據庫的會話session class ,注意,這里返回給session的是個class,不是實例
Session = Session_class() #生成session實例
user_obj = User(name="alex",password="123456") #生成你要創建的數據對象
print(user_obj.name,user_obj.id) #此時還沒創建對象呢,不信你打印一下id發現還是None
Session.add(user_obj) #把要創建的數據對象添加到這個session里, 一會統一創建
print(user_obj.name,user_obj.id) #此時也依然還沒創建
Session.commit() #現此才統一提交,創建數據
- 查詢
my_user = Session.query(User).filter_by(name="alex").first()
#這樣查詢出來的不是直接的數據是一個對象
print(my_user)#<__main__.User object at 0x105b4ba90>
#所以再經一輪提取才能獲得數據
print(my_user.id,my_user.name,my_user.password)
如果想查詢出來直接是數據的話,可以通過修改類的定義來返回
def __repr__(self):
return "<User(name='%s', password='%s')>" % (
self.name, self.password)
-
修改
修改就是先查詢出將要修改的內容,然后直接重新對其賦值,這樣就能達到修改的目的。
my_user = Session.query(User).filter_by(name="alex").first()
my_user.name = "Alex Li"
Session.commit()
- 回滾
my_user = Session.query(User).filter_by(id=1).first()
my_user.name = "Jack"
fake_user = User(name='Rain', password='12345')
Session.add(fake_user)
#這時看session里有你剛添加和修改的數據
print(Session.query(User).filter(User.name.in_(['Jack','rain'])).all() )
#此時你rollback一下
Session.rollback()
#再查就發現剛才添加的數據沒有了。
print(Session.query(User).filter(User.name.in_(['Jack','rain'])).all() )
# Session
# Session.commit()
-
獲取所有數據
print(Session.query(User.name,User.id).all())
-
多條件查詢
objs = Session.query(User).filter(User.id>0).filter(User.id<7).all()
上面2個filter的關系相當于 user.id >1 AND user.id <7 的效果 - 統計和分組
#統計
Session.query(User).filter(User.name.like("Ra%")).count()
#分組
from sqlalchemy import func
print(Session.query(func.count(User.name),User.name).group_by(User.name).all() )
#相當于原生sql為
select count(user.name) AS count_1, user.name AS user_name
FROM user GROUP BY user.name
-
外鍵關聯
我們創建一個addresses表,跟user表關聯
from sqlalchemy import Column, Integer, String, ForeignKey
from sqlalchemy.orm import relationship
class Address(Base):
__tablename__ = 'addresses'
id = Column(Integer, primary_key=True)
email_address = Column(String(32), nullable=False)
user_id = Column(Integer, ForeignKey('user.id'))
user = relationship("User", backref="addresses")
#這個nb,允許你在user表里通過backref字段反向查出所有它在addresses表里的關聯項
def __repr__(self):
return "<Address(email_address='%s')>" % self.email_address
表創建好后,我們可以這樣反查試試
obj = Session.query(User).first()
for i in obj.addresses: #通過user對象反查關聯的addresses記錄
print(i)
addr_obj = Session.query(Address).first()
print(addr_obj.user.name) #在addr_obj里直接查關聯的user表
創建關聯對象
obj = Session.query(User).filter(User.name=='rain').all()[0]
print(obj.addresses)
obj.addresses = [Address(email_address="r1@126.com"), #添加關聯對象
Address(email_address="r2@126.com")]
Session.commit()
2、多外鍵關聯
下表中,Customer表有2個字段都關聯了Address表
from sqlalchemy import Integer, ForeignKey, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship
Base = declarative_base()
class Customer(Base):
__tablename__ = 'customer'
id = Column(Integer, primary_key=True)
name = Column(String)
billing_address_id = Column(Integer, ForeignKey("address.id"))
shipping_address_id = Column(Integer, ForeignKey("address.id"))
billing_address = relationship("Address")
shipping_address = relationship("Address")
class Address(Base):
__tablename__ = 'address'
id = Column(Integer, primary_key=True)
street = Column(String)
city = Column(String)
state = Column(String)
創建表結構是沒有問題的,但你Address表中插入數據時會報下面的錯.
sqlalchemy.exc.AmbiguousForeignKeysError: Could not determine join
condition between parent/child tables on relationship
Customer.billing_address - there are multiple foreign key
paths linking the tables. Specify the 'foreign_keys' argument,
providing a list of those columns which should be
counted as containing a foreign key reference to the parent table.
解決辦法如下:
class Customer(Base):
__tablename__ = 'customer'
id = Column(Integer, primary_key=True)
name = Column(String)
billing_address_id = Column(Integer, ForeignKey("address.id"))
shipping_address_id = Column(Integer, ForeignKey("address.id"))
billing_address = relationship("Address", foreign_keys=[billing_address_id])
shipping_address = relationship("Address", foreign_keys=[shipping_address_id])
這樣sqlachemy就能分清哪個外鍵是對應哪個字段了
3、多對多關系
現在來設計一個能描述“圖書”與“作者”的關系的表結構,需求是
- 一本書可以有好幾個作者一起出版
- 一個作者可以寫好幾本書
#一本書可以有多個作者,一個作者又可以出版多本書
from sqlalchemy import Table, Column, Integer,String,DATE, ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
Base = declarative_base()
book_m2m_author = Table('book_m2m_author', Base.metadata,
Column('book_id',Integer,ForeignKey('books.id')),
Column('author_id',Integer,ForeignKey('authors.id')),
)
class Book(Base):
__tablename__ = 'books'
id = Column(Integer,primary_key=True)
name = Column(String(64))
pub_date = Column(DATE)
authors = relationship('Author',secondary=book_m2m_author,backref='books')
def __repr__(self):
return self.name
class Author(Base):
__tablename__ = 'authors'
id = Column(Integer, primary_key=True)
name = Column(String(32))
def __repr__(self):
return self.name
接下來創建幾本書和作者
Session_class = sessionmaker(bind=engine)
#創建與數據庫的會話session class ,注意,這里返回給session的是個class,不是實例
s = Session_class() #生成session實例
b1 = Book(name="Python入門到放棄")
b2 = Book(name="精通Python72式")
b3 = Book(name="MYSQL入門到裝逼")
b4 = Book(name="C#學習")
a1 = Author(name="Alex")
a2 = Author(name="Jack")
a3 = Author(name="Rain")
b1.authors = [a1,a2]
b2.authors = [a1,a2,a3]
s.add_all([b1,b2,b3,b4,a1,a2,a3])
s.commit()
此時,手動連上mysql,分別查看這3張表,你會發現,book_m2m_author中自動創建了多條紀錄用來連接book和author表
mysql> select * from books;
+----+------------------+----------+
| id | name | pub_date |
+----+------------------+----------+
| 1 | Python入門到放棄 | NULL |
| 2 | 精通Python72式 | NULL |
| 3 | MYSQL入門到裝逼 | NULL |
| 4 | C#學習 | NULL |
+----+------------------+----------+
4 rows in set (0.00 sec)
mysql> select * from authors;
+----+------+
| id | name |
+----+------+
| 10 | Alex |
| 11 | Jack |
| 12 | Rain |
+----+------+
3 rows in set (0.00 sec)
mysql> select * from book_m2m_author;
+---------+-----------+
| book_id | author_id |
+---------+-----------+
| 2 | 10 |
| 2 | 11 |
| 2 | 12 |
| 1 | 10 |
| 1 | 11 |
+---------+-----------+
5 rows in set (0.00 sec)
此時,我們去用orm查一下數據
print('--------通過書表查關聯的作者---------')
book_obj = s.query(Book).filter_by(name="Python入門到放棄").first()
print(book_obj.name, book_obj.authors)
print('--------通過作者表查關聯的書---------')
author_obj =s.query(Author).filter_by(name="Alex").first()
print(author_obj.name , author_obj.books)
s.commit()
輸出如下:
--------通過書表查關聯的作者---------
Python入門到放棄 [Alex, Jack]
--------通過作者表查關聯的書---------
Alex [精通Python72式, Python入門到放棄]
-
多對多刪除
刪除數據時不用管boo_m2m_authors , sqlalchemy會自動幫你把對應的數據刪除 - 通過書刪除作者
author_obj =s.query(Author).filter_by(name="Jack").first()
book_obj = s.query(Book).filter_by(name="精通Python72式").first()
book_obj.authors.remove(author_obj) #從一本書里刪除一個作者
s.commit()
-
直接刪除作者
刪除作者時,會把這個作者跟所有書的關聯關系數據也自動刪除
author_obj =s.query(Author).filter_by(name="Alex").first()
# print(author_obj.name , author_obj.books)
s.delete(author_obj)
s.commit()
-
處理中文
sqlalchemy設置編碼字符集一定要在數據庫訪問的URL上增加charset=utf8,否則數據庫的連接就不是utf8的編碼格式:
eng = create_engine('mysql://root:root@localhost:3306/test2?charset=utf8',echo=True)