Hive-UDAF

UDAF

前兩節分別介紹了基礎UDF和UDTF,這一節我們將介紹最復雜的用戶自定義聚合函數(UDAF)。用戶自定義聚合函數(UDAF)接受從零行到多行的零個到多個列,然后返回單一值,如sum()、count()。要實現UDAF,我們需要實現下面的類:

org.apache.hadoop.hive.ql.udf.generic.AbstractGenericUDAFResolver

org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator

AbstractGenericUDAFResolver檢查輸入參數,并且指定使用哪個resolver。在AbstractGenericUDAFResolver里,只需要實現一個方法:

public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters) throws SemanticException;  

但是,主要的邏輯處理還是在Evaluator中。我們需要繼承GenericUDAFEvaluator,并且實現下面幾個方法:


// 輸入輸出都是Object inspectors  
public  ObjectInspector init(Mode m, ObjectInspector[] parameters) throws HiveException;  
  
// AggregationBuffer保存數據處理的臨時結果  
abstract AggregationBuffer getNewAggregationBuffer() throws HiveException;  
  
// 重新設置AggregationBuffer  
public void reset(AggregationBuffer agg) throws HiveException;  
  
// 處理輸入記錄  
public void iterate(AggregationBuffer agg, Object[] parameters) throws HiveException;  
  
// 處理全部輸出數據中的部分數據  
public Object terminatePartial(AggregationBuffer agg) throws HiveException;  
  
// 把兩個部分數據聚合起來  
public void merge(AggregationBuffer agg, Object partial) throws HiveException;  
  
// 輸出最終結果  
public Object terminate(AggregationBuffer agg) throws HiveException;  

在處理之前,先看下UADF的Enum GenericUDAFEvaluator.Mode。Mode有4中情況:

  • PARTIAL1:Mapper階段。從原始數據到部分聚合,會調用iterate()和terminatePartial()。
  • PARTIAL2:Combiner階段,在Mapper端合并Mapper的結果數據。從部分聚合到部分聚合,會調用merge()和terminatePartial()。
  • FINAL:Reducer階段。從部分聚合數據到完全聚合,會調用merge()和terminate()。
  • COMPLETE:出現這個階段,表示MapReduce中只用Mapper沒有Reducer,所以Mapper端直接輸出結果了。從原始數據到完全聚合,會調用iterate()和terminate()。

GenericUDAFResolver2

@Deprecated
public abstract interface GenericUDAFResolver {
    public abstract GenericUDAFEvaluator getEvaluator(TypeInfo[] paramArrayOfTypeInfo) throws SemanticException;
}

已廢棄

public abstract interface GenericUDAFResolver2 extends GenericUDAFResolver {
    public abstract GenericUDAFEvaluator getEvaluator(GenericUDAFParameterInfo paramGenericUDAFParameterInfo)
            throws SemanticException;
}

GenericUDAFEvaluator

@UDFType(deterministic = true)
public abstract class GenericUDAFEvaluator implements Closeable {
    Mode mode;

    public static boolean isEstimable(AggregationBuffer buffer) {
        if (buffer instanceof AbstractAggregationBuffer) {
            Class clazz = buffer.getClass();
            AggregationType annotation = (AggregationType) clazz.getAnnotation(AggregationType.class);
            return ((annotation != null) && (annotation.estimable()));
        }
        return false;
    }

    public void configure(MapredContext mapredContext) {
    }

    public ObjectInspector init(Mode m, ObjectInspector[] parameters) throws HiveException {
        this.mode = m;
        return null;
    }

    public abstract AggregationBuffer getNewAggregationBuffer() throws HiveException;

    public abstract void reset(AggregationBuffer paramAggregationBuffer) throws HiveException;

    public void close() throws IOException {
    }

    public void aggregate(AggregationBuffer agg, Object[] parameters) throws HiveException {
        if ((this.mode == Mode.PARTIAL1) || (this.mode == Mode.COMPLETE)) {
            iterate(agg, parameters);
        } else {
            assert (parameters.length == 1);
            merge(agg, parameters[0]);
        }
    }

    public Object evaluate(AggregationBuffer agg) throws HiveException {
        if ((this.mode == Mode.PARTIAL1) || (this.mode == Mode.PARTIAL2)) {
            return terminatePartial(agg);
        }
        return terminate(agg);
    }

    public abstract void iterate(AggregationBuffer paramAggregationBuffer, Object[] paramArrayOfObject)
            throws HiveException;

    public abstract Object terminatePartial(AggregationBuffer paramAggregationBuffer) throws HiveException;

    public abstract void merge(AggregationBuffer paramAggregationBuffer, Object paramObject) throws HiveException;

    public abstract Object terminate(AggregationBuffer paramAggregationBuffer) throws HiveException;

    public static abstract class AbstractAggregationBuffer implements GenericUDAFEvaluator.AggregationBuffer {
        public int estimate() {
            return -1;
        }
    }

    public static abstract interface AggregationBuffer {
    }

    public static enum Mode {
        PARTIAL1, PARTIAL2, FINAL, COMPLETE;
    }

    public static @interface AggregationType {
        public abstract boolean estimable();
    }
}

例子

count
/*** Eclipse Class Decompiler plugin, copyright (c) 2016 Chen Chao (cnfree2000@hotmail.com) ***/
package org.apache.hadoop.hive.ql.udf.generic;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.LongObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo;
import org.apache.hadoop.io.LongWritable;

@Description(name = "count", value = "_FUNC_(*) - Returns the total number of retrieved rows, including rows containing NULL values.\n_FUNC_(expr) - Returns the number of rows for which the supplied expression is non-NULL.\n_FUNC_(DISTINCT expr[, expr...]) - Returns the number of rows for which the supplied expression(s) are unique and non-NULL.")
public class GenericUDAFCount implements GenericUDAFResolver2 {
    private static final Log LOG;

    public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters) throws SemanticException {
        return new GenericUDAFCountEvaluator();
    }

    public GenericUDAFEvaluator getEvaluator(GenericUDAFParameterInfo paramInfo) throws SemanticException {
        TypeInfo[] parameters = paramInfo.getParameters();

        if (parameters.length == 0) {
            if (!(paramInfo.isAllColumns())) {
                throw new UDFArgumentException("Argument expected");
            }
            if ((!($assertionsDisabled)) && (paramInfo.isDistinct()))
                throw new AssertionError("DISTINCT not supported with *");
        } else {
            if ((parameters.length > 1) && (!(paramInfo.isDistinct()))) {
                throw new UDFArgumentException("DISTINCT keyword must be specified");
            }
            assert (!(paramInfo.isAllColumns())) : "* not supported in expression list";
        }

        return new GenericUDAFCountEvaluator().setCountAllColumns(paramInfo.isAllColumns());
    }

    static {
        LOG = LogFactory.getLog(GenericUDAFCount.class.getName());
    }

    public static class GenericUDAFCountEvaluator extends GenericUDAFEvaluator {
        private boolean countAllColumns;
        private LongObjectInspector partialCountAggOI;
        private LongWritable result;

        public GenericUDAFCountEvaluator() {
            this.countAllColumns = false;
        }

        public ObjectInspector init(GenericUDAFEvaluator.Mode m, ObjectInspector[] parameters) throws HiveException {
            super.init(m, parameters);
            this.partialCountAggOI = PrimitiveObjectInspectorFactory.writableLongObjectInspector;

            this.result = new LongWritable(0L);
            return PrimitiveObjectInspectorFactory.writableLongObjectInspector;
        }

        private GenericUDAFCountEvaluator setCountAllColumns(boolean countAllCols) {
            this.countAllColumns = countAllCols;
            return this;
        }

        public GenericUDAFEvaluator.AggregationBuffer getNewAggregationBuffer() throws HiveException {
            CountAgg buffer = new CountAgg();
            reset(buffer);
            return buffer;
        }

        public void reset(GenericUDAFEvaluator.AggregationBuffer agg) throws HiveException {
            ((CountAgg) agg).value = 0L;
        }

        public void iterate(GenericUDAFEvaluator.AggregationBuffer agg, Object[] parameters) throws HiveException {
            if (parameters == null) {
                return;
            }
            if (this.countAllColumns) {
                assert (parameters.length == 0);
                ((CountAgg) agg).value += 1L;
            } else {
                assert (parameters.length > 0);
                boolean countThisRow = true;
                for (Object nextParam : parameters) {
                    if (nextParam == null) {
                        countThisRow = false;
                        break;
                    }
                }
                if (countThisRow)
                    ((CountAgg) agg).value += 1L;
            }
        }

        public void merge(GenericUDAFEvaluator.AggregationBuffer agg, Object partial) throws HiveException {
            if (partial != null) {
                long p = this.partialCountAggOI.get(partial);
                ((CountAgg) agg).value += p;
            }
        }

        public Object terminate(GenericUDAFEvaluator.AggregationBuffer agg) throws HiveException {
            this.result.set(((CountAgg) agg).value);
            return this.result;
        }

        public Object terminatePartial(GenericUDAFEvaluator.AggregationBuffer agg) throws HiveException {
            return terminate(agg);
        }

        @GenericUDAFEvaluator.AggregationType(estimable = true)
        static class CountAgg extends GenericUDAFEvaluator.AbstractAggregationBuffer {
            long value;

            public int estimate() {
                return 8;
            }
        }
    }
}
sum

udaf 需要hive的sql和group by聯合使用。hive的group by對于每個分組,只能返回一條記錄。

開發通用udaf有另個步驟,一個是編寫resolver類,第二個是編寫evaluator類。resolver負責類型檢查,操作符重載。evaluator負責實現真正的udaf邏輯、

以sum為例、

reslver通常繼承resolver2.但是建議繼承resolver。隔離將來hive接口的變化。

public class GenericUDAFSum extends AbstractGenericUDAFResolver {
    static final Log LOG = LogFactory.getLog(GenericUDAFSum.class.getName());

    public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters)
    throws SemanticException
  {
    if (parameters.length != 1) {
      throw new UDFArgumentTypeException(parameters.length - 1, "Exactly one argument is expected.");
    }

    if (parameters[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
      throw new UDFArgumentTypeException(0, "Only primitive type arguments are accepted but " + parameters[0].getTypeName() + " is passed.");
    }

    switch (1.$SwitchMap$org$apache$hadoop$hive$serde2$objectinspector$PrimitiveObjectInspector$PrimitiveCategory[((org.apache.hadoop.hive.serde2.typeinfo.PrimitiveTypeInfo)parameters[0]).getPrimitiveCategory().ordinal()]) {
    case 1:
    case 2:
    case 3:
    case 4:
      return new GenericUDAFSumLong();
    case 5:
    case 6:
    case 7:
    case 8:
    case 9:
    case 10:
      return new GenericUDAFSumDouble();
    case 11:
      return new GenericUDAFSumHiveDecimal();
    case 12:
    case 13:
    }
    throw new UDFArgumentTypeException(0, "Only numeric or string type arguments are accepted but " + parameters[0].getTypeName() + " is passed.");
  }

著就是udaf的代碼骨架。創建一個log對象。 重寫getEvaluator方法。根據sql傳入的參數類型,返回爭取的evaluator。主要實現操作符的重載。

實現evaluator

下面以genericudafsumlong為例。

public static class GenericUDAFSumLong extends GenericUDAFEvaluator {
        private PrimitiveObjectInspector inputOI;
        private LongWritable result;
        private boolean warned;

        public GenericUDAFSumLong() {
            this.warned = false;
        }
        //這個方法返回可udaf的返回類型。這里定義返回類型為long
        public ObjectInspector init(GenericUDAFEvaluator.Mode m, ObjectInspector[] parameters) throws HiveException {
            assert (parameters.length == 1);
            super.init(m, parameters);
            this.result = new LongWritable(0L);
            this.inputOI = ((PrimitiveObjectInspector) parameters[0]);
            return PrimitiveObjectInspectorFactory.writableLongObjectInspector;
        }

        //創建新的聚合計算需要的內存,用來存儲mapper,combiner,reducer運算過程中的相加總和。
        public GenericUDAFEvaluator.AggregationBuffer getNewAggregationBuffer() throws HiveException {
            SumLongAgg result = new SumLongAgg();
            reset(result);
            return result;
        }

        //mr支持mapper和reducer的重用,所以為了兼容,也要做內存的重用
        public void reset(GenericUDAFEvaluator.AggregationBuffer agg) throws HiveException {
            SumLongAgg myagg = (SumLongAgg) agg;
            myagg.empty = true;
            myagg.sum = 0L;
        }
        
        //map階段,只要把保存道歉和的對象agg,再加上輸入的參數,就可以了。
        public void iterate(GenericUDAFEvaluator.AggregationBuffer agg, Object[] parameters) throws HiveException {
            assert (parameters.length == 1);
            try {
                merge(agg, parameters[0]);
            } catch (NumberFormatException e) {
                if (!(this.warned)) {
                    this.warned = true;
                    GenericUDAFSum.LOG.warn(super.getClass().getSimpleName() + " " + StringUtils.stringifyException(e));
                }
            }
        }

        //mapper結束要返回的結果和combiner結束要返回的結果。
        public Object terminatePartial(GenericUDAFEvaluator.AggregationBuffer agg) throws HiveException {
            return terminate(agg);
        }
        
        //combiner合并map返回的結果,還有reducer合并mapper或combiner返回的結果
        public void merge(GenericUDAFEvaluator.AggregationBuffer agg, Object partial) throws HiveException {
            if (partial != null) {
                SumLongAgg myagg = (SumLongAgg) agg;
                myagg.sum += PrimitiveObjectInspectorUtils.getLong(partial, this.inputOI);
                myagg.empty = false;
            }
        }

        //reducer返回結果,或者是只有mapper,沒有reducer,在mapper端返回結果。
        public Object terminate(GenericUDAFEvaluator.AggregationBuffer agg) throws HiveException {
            SumLongAgg myagg = (SumLongAgg) agg;
            if (myagg.empty) {
                return null;
            }
            this.result.set(myagg.sum);
            return this.result;
        }
        
        //存儲sum值得類
        @GenericUDAFEvaluator.AggregationType(estimable = true)
        static class SumLongAgg extends GenericUDAFEvaluator.AbstractAggregationBuffer {
            boolean empty;
            long sum;

            public int estimate() {
                return 12;
            }
        }
    }
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,908評論 6 541
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,324評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,018評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,675評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,417評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,783評論 1 329
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,779評論 3 446
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,960評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,522評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,267評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,471評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,009評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,698評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,099評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,386評論 1 294
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,204評論 3 398
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,436評論 2 378

推薦閱讀更多精彩內容