GitHub Windows版Caffe分支 Windows Caffe
安裝環境
- Visual Studio 2015
Visual Studio Professional 2015 (x86 and x64) - DVD (Chinese-Simplified) -
CMake 3.4 或更高
cmake-3.9.1-win64-x64.msi - Python 3.5 Anaconda x64
Anaconda3-4.2.0-Windows-x86_64.exe - CUDA 8.0
CUDA下載 - cuDNN v5.1
cuDNN 下載 需要注冊
需要使用Tensorflow最新版本需要安裝cuDNN v6 - MATLAB
需要使用Matconvnet,在CUDA8.0下,需要安裝MATLAB2017a s8sh
cuDNN安裝
- 安裝CUDA
- 下載cuDNN并解壓壓縮包
- 將解壓后的文件夾
cuda
下的文件分別復制到CUDA安裝目錄
cuDNN目錄 | CUDA安裝目錄 |
---|---|
cuda\bin |
C:\Program Files\NVIDIA GPU Computing Tookit\CUDA\v8.0\bin |
cuda\include |
C:\Program Files\NVIDIA GPU Computing Tookit\CUDA\v8.0\include |
cuda\lib\x64 |
C:\Program Files\NVIDIA GPU Computing Tookit\CUDA\v8.0\lib\x64 |
安裝Caffe
- D盤新建目錄
CaffeBuild
- 打開cmd(命令提示符)切換到
CaffeBuild
目錄
> d:
> cd CaffeBuild
- 下載Caffe
D:\CaffeBuild> git clone https://github.com/BVLC/caffe.git
D:\CaffeBuild> cd caffe
D:\CaffeBuild> git checkout windows
- 修改配置
在D:\CaffeBuild\caffe\scripts
下修改build_win.cmd
文件,使用Sublime打開
第8,9,14行
:: Default values
if DEFINED APPVEYOR (
echo Setting Appveyor defaults
if NOT DEFINED MSVC_VERSION set MSVC_VERSION=14
if NOT DEFINED WITH_NINJA set WITH_NINJA=0
if NOT DEFINED CPU_ONLY set CPU_ONLY=0
if NOT DEFINED CUDA_ARCH_NAME set CUDA_ARCH_NAME=Auto
if NOT DEFINED CMAKE_CONFIG set CMAKE_CONFIG=Release
if NOT DEFINED USE_NCCL set USE_NCCL=0
if NOT DEFINED CMAKE_BUILD_SHARED_LIBS set CMAKE_BUILD_SHARED_LIBS=0
if NOT DEFINED PYTHON_VERSION set PYTHON_VERSION=3
if NOT DEFINED BUILD_PYTHON set BUILD_PYTHON=1
if NOT DEFINED BUILD_PYTHON_LAYER set BUILD_PYTHON_LAYER=1
if NOT DEFINED BUILD_MATLAB set BUILD_MATLAB=1
if NOT DEFINED PYTHON_EXE set PYTHON_EXE=python
if NOT DEFINED RUN_TESTS set RUN_TESTS=1
if NOT DEFINED RUN_LINT set RUN_LINT=1
if NOT DEFINED RUN_INSTALL set RUN_INSTALL=1
第29行
:: Set python 3.5 with conda as the default python
if !PYTHON_VERSION! EQU 3 (
set CONDA_ROOT=D:\Anaconda3
)
第74行
:: Change to 1 to use Ninja generator (builds much faster)
if NOT DEFINED WITH_NINJA set WITH_NINJA=0
第87行
:: Change to 3 if using python 3.5 (only 2.7 and 3.5 are supported)
if NOT DEFINED PYTHON_VERSION set PYTHON_VERSION=3
第91行
:: Change these options for your needs.
if NOT DEFINED BUILD_PYTHON set BUILD_PYTHON=1
if NOT DEFINED BUILD_PYTHON_LAYER set BUILD_PYTHON_LAYER=1
if NOT DEFINED BUILD_MATLAB set BUILD_MATLAB=1
第167行添加
:: Configure using cmake and using the caffe-builder dependencies
:: Add -DCUDNN_ROOT=C:/Projects/caffe/cudnn-8.0-windows10-x64-v5.1/cuda ^
:: below to use cuDNN
cmake -G"!CMAKE_GENERATOR!" ^
-DBLAS=Open ^
-DCMAKE_BUILD_TYPE:STRING=%CMAKE_CONFIG% ^
-DBUILD_SHARED_LIBS:BOOL=%CMAKE_BUILD_SHARED_LIBS% ^
-DBUILD_python:BOOL=%BUILD_PYTHON% ^
-DBUILD_python_layer:BOOL=%BUILD_PYTHON_LAYER% ^
-DBUILD_matlab:BOOL=%BUILD_MATLAB% ^
-DCUDNN_ROOT=C:\Program Files\NVIDIA GPU Computiong Toolkit\CUDA\v8.0 ^
-DCPU_ONLY:BOOL=%CPU_ONLY% ^
-DCOPY_PREREQUISITES:BOOL=1 ^
-DINSTALL_PREREQUISITES:BOOL=1 ^
-DUSE_NCCL:BOOL=!USE_NCCL! ^
-DCUDA_ARCH_NAME:STRING=%CUDA_ARCH_NAME% ^
"%~dp0\.."
- 執行腳本
D:\CaffeBuild\caffe> scripts\build_win.cmd
耐心等待,希望別報錯:)
下載依賴包可能因為網絡原因會失敗
網盤下載并放到下面這個目錄下,其中users后面的路徑改成你電腦的用戶名
C:\Users\shuai\.caffe\dependencies\download
這個依賴包只適合這個環境,其他環境需要搞定網絡后重新運行腳本
#報錯
'"C:\Program Files (x86)\Microsoft Visual Studio 14.0\Common7\Tools\..\..\VC\vcvarsall.bat"' 不是內部或外部命令,也不是 可運行的程序
或批處理文件。
-- The C compiler identification is unknown
-- The CXX compiler identification is unknown
CMake Error at CMakeLists.txt:18 (project):
No CMAKE_C_COMPILER could be found.
CMake Error at CMakeLists.txt:18 (project):
No CMAKE_CXX_COMPILER could be found.
-- Configuring incomplete, errors occurred!
See also "E:/CaffeBuild/caffe/build/CMakeFiles/CMakeOutput.log".
See also "E:/CaffeBuild/caffe/build/CMakeFiles/CMakeError.log".
ERROR: Configure failed
解決方法:打開VS2015安裝程序,選擇修改,勾選編程語言下的Visual C++
裝了兩次都出現下面這個錯誤
#報錯
CMake Error at cmake/Utils.cmake:69 (string):
string sub-command STRIP requires two arguments.
解決方法:修改caffe\cmake下Utils.cmake,第69行加引號
# Function merging lists of compiler flags to single string.
# Usage:
# caffe_merge_flag_lists(out_variable <list1> [<list2>] [<list3>] ...)
function(caffe_merge_flag_lists out_var)
set(__result "")
foreach(__list ${ARGN})
foreach(__flag ${${__list}})
string(STRIP ${__flag} __flag)
set(__result "${__result} ${__flag}")
endforeach()
endforeach()
string(STRIP "${__result}" __result)
set(${out_var} ${__result} PARENT_SCOPE)
endfunction()
如果安裝成功則在caffe\build\tools\Release
下有可執行文件
Python接口
打開Anaconda下的Anaconda Prompt
conda config --add channels conda-forge
conda config --add channels willyd
conda install --yes cmake ninja numpy scipy protobuf==3.1.0 six scikit-image pyyaml pydotplus graphviz
E:\CaffeBuild\caffe\python下caffe
文件夾復制到E:\Anaconda3\Lib\site-packages
下
在cmd中輸入python
,執行import caffe
,若沒有報錯,則Python接口成功配置
MATLAB接口
在E:\caffeBuild\caffe\matlab
目錄下MATLAB中運行>> caffe.run_tests()
把E:\CaffeBuild\caffe\matlab\+caffe\private\Release
下的caffe_mexw64
復制到E:\CaffeBuild\caffe\matlab\+caffe\private
下
修改matlab+caffe\Net.m第72行
function delete (self)
if self.isvalid
caffe_('delete_net', self.hNet_self);
end
end
下載模型,cmd在caffe根目錄下執行
python scripts\download_model_binary.py models\bvlc_reference_caffenet
打開MATLAB,打開E:\CaffeBuild\caffe\matlab\demo\classification_demo.m
命令行窗口執行
im = imread('E:\CaffeBuild\caffe\examples\images\cat.jpg');
執行classification_demo.m
在MATLAB命令窗口執行help caffe
,如果不報錯,則MATLAB接口配置成功