Estimation, Optimization, and Parallelism when Data is Sparse

1. Abstract

  • study stochastic optimization problems when the data is sparse. 研究數據稀疏的隨機優化問題
  • we derive matching upper and lower bounds on the minimax rate for optimization
    and learning with sparse data. 給出了稀疏優化問題minimax rate的上界和下界
  • show how leveraging sparsity leads to (still minimax optimal) parallel and asynchronous algorithms. 提出了一些并行異步的算法
  • async AdaGrad, async Dual Averaging

2. Intro

  • In this paper, we take a two-pronged approach. 分兩方面分析問題
  • First, we investigate the fundamental limits of optimization and learning algorithms in sparse data regimes. In doing so, we derive lower bounds on the optimization error of any algorithm for problems of the form (1) with sparsity condition. 首先,分析了稀疏優化和學習問題的根本限制。得出了任何稀疏條件下優化算法的優化誤差的下界
  • As the second facet of our two-pronged approach, we study how sparsity may be leveraged in parallel computing frameworks to give substantially faster algorithms that still achieve optimal sample complexity. 另一方面,研究怎么在并行計算中利用稀疏性質來給出更快的算法
  • We develop two new algorithms, asynchronous dual averaging (ASYNCDA) and asynchronous ADAGRAD (ASYNCADAGRAD), which allow asynchronous parallel solution of the problem (1) for general convex f and X. 提出了兩個新算法,異步的dual averaging和異步的AdaGrad

3. Minimax rates for sparse optimization

  • 給出了任何這類問題算法的minimax convergence rate的bound

4. Parallel and asynchronous optimization with sparsity

  • we first revisit Niu et al.’s HOGWILD! [12]. HOGWILD! is an asynchronous (parallelized) stochastic
    gradient algorithm for optimization over product-space domains, meaning that X in problem (1)
    decomposes as X = X1 × · · · × Xd, where Xj ? R. 首先回顧HOGWILD,異步并行隨機梯度算法,數據的domain是product space
  • The key of HOGWILD! is that in step 2, the parameter x is allowed to be inconsistent—it may have received partial gradient updates from many processors—and for appropriate problems, this inconsistency is negligible. Hogwild的參數是inconsistent,是不一致的.

4.1. Asynchronous dual averaging

  • Hogwild的缺點,好像需要域是product space點積空間(笛卡爾積)
  • ASYNCDA maintains and upates a centralized dual vector z instead of a parameter x, and a pool of
    processors perform asynchronous updates to z, where each processor independently iterates:
  1. 提出了一種異步的dual averaging算法,AsyncDA,保存和更新一個中心的dual向量z,線程池異步地更新z
  • The only communication point between any of the processors is the addition operation in step 3.
    Since addition is commutative and associative, forcing all asynchrony to this point of the algorithm
    is a natural strategy for avoiding synchronization problems. 線程之間的唯一通信是addition操作。因為addition是可交換和可結合的,讓這里成為為異步的點是很自然的策略。

4.2. Asynchronous AdaGrad

  • AdaGrad擴展到異步方式

5. Experiments

  • URL dataset. The dataset in this case consists of an anonymized collection of URLs labeled as malicious (e.g., spam, phishing, etc.) or benign over a span of 120 days.
  • We also experiment on a proprietary datasets consisting of search ad impressions. Each example
    corresponds to showing a search-engine user a particular text ad in response to a query string. From this, we construct a very sparse feature vector based on the text of the ad displayed and the query string (no user-specific data is used). The target label is 1 if the user clicked the ad and -1 otherwise. 轉悠的廣告數據集.
  • 算法是LR
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,316評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,481評論 3 415
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,241評論 0 374
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,939評論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,697評論 6 409
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,182評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,247評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,406評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,933評論 1 334
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,772評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,973評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,516評論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,209評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,638評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,866評論 1 285
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,644評論 3 391
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,953評論 2 373

推薦閱讀更多精彩內容