這一學期我們學習了第一單元 小數除法,第二單元 軸對稱和平移,第三單元 倍數和因數。下面我就把每個單元,在學習中掌握和理解的內容分別如下:
第一單元 小數除法中,我們要理解小數除法的意義,知道小數除以整數的計算方法,計算中商的小數點與被除數的小數點要對齊,如果除到被除數的末尾仍有余數,要在余數后面添“0”繼續除;如果被除數比除數小,整數部分不夠商1,要在商的個位上寫0,點上小數點后再除,除到哪一位上不夠商1,就在那一位上商0占位。
等二單元 軸對稱和平移中,多掌握判斷一個圖形是不是軸對稱圖形。并能正確找出一個圖形對稱軸的條數。畫軸對稱圖形的另一半,先找到每條線段的端點,再找到和這些點對稱的點,把這些對稱點按順序依次連接起來。? ?
畫一個圖形的軸對稱圖形,先畫幾個關鍵的對稱點,在連線。
軸對稱在日常生活中用途很廣,如民間藝術剪紙、制作鞋底等都是根據圖形的對稱得到的。在方格紙上畫平移后的圖形時,先在原圖上點一個點,平移后點上對應點,再從平移后的對應點開始,照原圖畫好。圖形平移后,大小和行狀都不能改變。生活中的平移現象有很多,如行駛中的火車、推拉窗戶、小朋友們滑滑梯等。學習在方格紙上畫平移后的圖形,可以推算平移的距離和平移后的位置。? ? 通過軸對稱和平移,可以創造出很多美麗的圖案。利用軸對稱或平移設計圖案時,要選準基本圖形。平移要確定平移的格數和方向;軸對稱要確定好對稱軸,選好關鍵點。判斷一個圖形是不是軸對稱圖形,要根據軸對稱圖形的定義去判斷,即把圖形沿某一條直線對折后,直線兩邊的部分能完全純重和,就說這個圖形是軸對稱圖形。為了避免把圖形間隔的格數,可以用圖形中的一個點來移動,數出平移格數,這樣就容易區分它們。
等三單元 倍數與因數。在本單元中知道0是一個特殊的自然數,0乘任何數等于0,0是任何一個非0自然數的倍數,任何非0自然數都是0的因數。通過觀察5的倍數,可以發現個位上是0或5的數,都是5的倍數。通過觀察2的倍數,發現個位上是0,2,4,6,8的數,都是2的倍數。是2的倍數的數叫偶數,不是2的倍數的數叫奇數。一個數的各個數位上的數字之和是3的倍數,這個數就是3的倍數。找一個數的全部因數,看那個數相乘等于這個數,這兩個數就是這個數的因數。1只有1個因數,所以1即不是質數也不是和數。一個數只有1和它本身兩個因數,這個數叫做質數。一個數除了1和它本身以外還有別的因數,這個數叫做合數。
通過這三個單元的學習,,要多練習,首先要把定義搞清楚,才能更好地掌握。