決策樹(Decision
Tree)是一種簡單但是廣泛使用的分類器。通過訓練數據構建決策樹,可以高效的對未知的數據進行分類。決策數有兩大優點:1)決策樹模型可以讀性好,具有描述性,有助于人工分析;2)效率高,決策樹只需要一次構建,反復使用,每一次預測的最大計算次數不超過決策樹的深度。
決策樹(Decision
Tree)是一種簡單但是廣泛使用的分類器。通過訓練數據構建決策樹,可以高效的對未知的數據進行分類。決策數有兩大優點:1)決策樹模型可以讀性好,具有描述性,有助于人工分析;2)效率高,決策樹只需要一次構建,反復使用,每一次預測的最大計算次數不超過決策樹的深度。