R 實(shí)戰(zhàn)| 幾種常用的繪制離散變量熱圖/方塊圖/華夫圖的方法

CELL_discret.jpg

前言

多組學(xué)文章經(jīng)常出現(xiàn)非連續(xù)變量的熱圖或者叫格子圖。舉幾個例子:

Snipaste_2021-11-25_22-38-06
Snipaste_2021-11-25_22-39-29

以上兩個圖都來自2021.09的一篇Cell,標(biāo)題是Proteogenomic characterization of pancreatic ductal adenocarcinoma。今天就不細(xì)講這兩幅圖了。這種圖給我們展示離散/分類變量的差異提供了一個思路。今天就簡單介紹幾種常用的畫這種圖的方法。

22

常用方法

構(gòu)建一個分類變量組成的示例數(shù)據(jù)。

library(ggplot2)
library(tidyverse)
library(reshape2)
library(RColorBrewer)
clinical.df=data.frame(
  patient=paste("P",seq(1:15),sep = ""),
  age=sample(c("young","old"),15,replace = T),
  gender=sample(c("male","female"),15,replace = T),
  symptom=sample(c("mild","moderate","severe"),15,replace = T),
  RNAseq=sample(c("yes","no"),15,replace = T),
  WES=sample(c("yes","no"),15,replace = T)
)
head(clinical.df)
> head(clinical.df)
  patient   age gender  symptom RNAseq WES
1      P1   old female moderate    yes  no
2      P2   old   male moderate    yes  no
3      P3   old   male moderate    yes yes
4      P4 young female   severe    yes yes
5      P5   old female moderate     no  no
6      P6 young   male moderate     no  no
# 長寬轉(zhuǎn)換 已備作圖
clinical.df2=melt(clinical.df,id="patient")
head(clinical.df2)
> head(clinical.df2)
  patient variable value
1      P1      age   old
2      P2      age   old
3      P3      age   old
4      P4      age young
5      P5      age   old
6      P6      age young

geom_tile

Color<-brewer.pal(9, "Set3") # 設(shè)置顏色
# 設(shè)置因子順序
clinical.df2$patient=factor(clinical.df2$patient,levels = paste("P",seq(1:15),sep = ""))
clinical.df2$variable=factor(clinical.df2$variable,levels = c("WES","RNAseq","symptom","gender","age"))
ggplot(clinical.df2, aes(x = patient, y = variable, fill = value)) +
  geom_tile(color = "white", size = 0.25) +
  scale_fill_manual(name = "Category",
                    #labels = names(sort_table),
                    values = Color)+
  theme(#panel.border = element_rect(fill=NA,size = 2),
    panel.background = element_blank(),
    plot.title = element_text(size = rel(1.2)),
    axis.title = element_blank(),
    axis.ticks = element_blank(),
    legend.title = element_blank(),
    legend.position = "right")
image-20211125225237494

ggwaffle

devtools::install_github("liamgilbey/ggwaffle") # 下載包
library(ggwaffle)
ggplot(clinical.df2, aes(patient, variable, fill = value)) + 
  geom_waffle()+
  scale_fill_manual(name = "Category",
                    #labels = names(sort_table),
                    values = Color)+
  theme(#panel.border = element_rect(fill=NA,size = 2),
    panel.background = element_blank(),
    plot.title = element_text(size = rel(1.2)),
    axis.title = element_blank(),
    axis.ticks = element_blank(),
    legend.title = element_blank(),
    legend.position = "right")

geom_tile異曲同工。

image-20211125225912215

ComplexHeatmap

ComplexHeatmap應(yīng)該是最能還原本文前言圖的包,不過我這里暫時還沒時間搞定,后續(xù)發(fā)復(fù)現(xiàn)版本的代碼。

row.names(clinical.df) <- clinical.df[,1]
clinical.df <- clinical.df[,-1]
clinical.df3 <- data.frame(t(clinical.df)) 
# 上面的代碼為了將數(shù)據(jù)轉(zhuǎn)為熱圖矩陣
library(ComplexHeatmap)
Heatmap(clinical.df3)
image-20211125230958807

未經(jīng)雕飾的圖確實(shí)不是很美觀。

總結(jié)

以上就是我所知的幾種常用的畫離散變量的熱圖的方法。如果大家有更巧妙的想法,歡迎在后臺留言互相學(xué)習(xí)交流。

參考

R繪圖(2): 離散/分類變量如何畫熱圖/方塊圖 - 簡書 (jianshu.com)

往期

  1. 跟著Nature學(xué)作圖 | 配對啞鈴圖+分組擬合曲線+分類變量熱圖
  2. (免費(fèi)教程+代碼領(lǐng)取)|跟著Cell學(xué)作圖系列合集
  3. 跟著Nat Commun學(xué)作圖 | 1.批量箱線圖+散點(diǎn)+差異分析
  4. 跟著Nat Commun學(xué)作圖 | 2.時間線圖
  5. 跟著Nat Commun學(xué)作圖 | 3.物種豐度堆積柱狀圖
  6. 跟著Nat Commun學(xué)作圖 | 4.配對箱線圖+差異分析

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,702評論 6 534
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,615評論 3 419
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,606評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,044評論 1 314
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 71,826評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,227評論 1 324
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,307評論 3 442
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,447評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,992評論 1 335
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 40,807評論 3 355
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 43,001評論 1 370
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,550評論 5 361
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,243評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,667評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,930評論 1 287
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,709評論 3 393
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 47,996評論 2 374

推薦閱讀更多精彩內(nèi)容