深入理解groupByKey、reduceByKey

測試源碼

下面來看看groupByKey和reduceByKey的區別:

    val conf = new SparkConf().setAppName("GroupAndReduce").setMaster("local")
    val sc = new SparkContext(conf)
    val words = Array("one", "two", "two", "three", "three", "three")
    val wordsRDD = sc.parallelize(words).map(word => (word, 1))
    val wordsCountWithReduce = wordsRDD.
      reduceByKey(_ + _).
      collect().
      foreach(println)
    val wordsCountWithGroup = wordsRDD.
      groupByKey().
      map(w => (w._1, w._2.sum)).
      collect().
      foreach(println)

雖然兩個函數都能得出正確的結果, 但reduceByKey函數更適合使用在大數據集上。 這是因為Spark知道它可以在每個分區移動數據之前將輸出數據與一個共用的key結合。

借助下圖可以理解在reduceByKey里發生了什么。 在數據對被搬移前,同一機器上同樣的key是怎樣被組合的( reduceByKey中的 lamdba 函數)。然后 lamdba 函數在每個分區上被再次調用來將所有值 reduce成最終結果。整個過程如下:

image
image

另一方面,當調用 groupByKey時,所有的鍵值對(key-value pair) 都會被移動,在網絡上傳輸這些數據非常沒必要,因此避免使用 GroupByKey。

為了確定將數據對移到哪個主機,Spark會對數據對的key調用一個分區算法。 當移動的數據量大于單臺執行機器內存總量時Spark會把數據保存到磁盤上。 不過在保存時每次會處理一個key的數據,所以當單個 key 的鍵值對超過內存容量會存在內存溢出的異常。 這將會在之后發行的 Spark 版本中更加優雅地處理,這樣的工作還可以繼續完善。 盡管如此,仍應避免將數據保存到磁盤上,這會嚴重影響性能。

image
image

你可以想象一個非常大的數據集,在使用 reduceByKey 和 groupByKey 時他們的差別會被放大更多倍。

我們來看看兩個函數的實現:

  def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = self.withScope {
    combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner)
  }
  /**
  * Note: As currently implemented, groupByKey must be able to hold all the key-value pairs for any
   * key in memory. If a key has too many values, it can result in an [[OutOfMemoryError]].
   */
  def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])] = self.withScope {
    // groupByKey shouldn't use map side combine because map side combine does not
    // reduce the amount of data shuffled and requires all map side data be inserted
    // into a hash table, leading to more objects in the old gen.
    val createCombiner = (v: V) => CompactBuffer(v)
    val mergeValue = (buf: CompactBuffer[V], v: V) => buf += v
    val mergeCombiners = (c1: CompactBuffer[V], c2: CompactBuffer[V]) => c1 ++= c2
    val bufs = combineByKeyWithClassTag[CompactBuffer[V]](
      createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false)
    bufs.asInstanceOf[RDD[(K, Iterable[V])]]
  }

注意mapSideCombine=false,partitioner是HashPartitioner,但是groupByKey對小數據量比較好,一個key對應的個數少于10個。

他們都調用了combineByKeyWithClassTag,我們再來看看combineByKeyWithClassTag的定義:

  def combineByKeyWithClassTag[C](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      partitioner: Partitioner,
      mapSideCombine: Boolean = true,
      serializer: Serializer = null)(implicit ct: ClassTag[C]): RDD[(K, C)]

combineByKey函數主要接受了三個函數作為參數,分別為createCombiner、mergeValue、mergeCombiners。這三個函數足以說明它究竟做了什么。理解了這三個函數,就可以很好地理解combineByKey。

combineByKey是將RDD[(K,V)]combine為RDD[(K,C)],因此,首先需要提供一個函數,能夠完成從V到C的combine,稱之為combiner。如果V和C類型一致,則函數為V => V。倘若C是一個集合,例如Iterable[V],則createCombiner為V => Iterable[V]。

mergeValue則是將原RDD中Pair的Value合并為操作后的C類型數據。合并操作的實現決定了結果的運算方式。所以,mergeValue更像是聲明了一種合并方式,它是由整個combine運算的結果來導向的。函數的輸入為原RDD中Pair的V,輸出為結果RDD中Pair的C。

最后的mergeCombiners則會根據每個Key所對應的多個C,進行歸并。

例如:

var rdd1 = sc.makeRDD(Array(("A", 1), ("A", 2), ("B", 1), ("B", 2),("B",3),("B",4), ("C", 1)))
    rdd1.combineByKey(
      (v: Int) => v + "_",
      (c: String, v: Int) => c + "@" + v,
      (c1: String, c2: String) => c1 + "$" + c2
    ).collect.foreach(println)

result不確定歐,單機執行不會調用mergeCombiners:

(B,1_@2@3@4)
(A,1_@2)
(C,1_)

在集群情況下:

(B,2_@3@4$1_)
(A,1_@2)
(C,1_)
或者
(B,1_$2_@3@4)
(A,1_@2)
(C,1_)

mapSideCombine=false時,再體驗一下運行結果。

有許多函數比goupByKey好:

  1. 當你combine元素時,可以使用combineByKey,但是輸入值類型和輸出可能不一樣
  2. foldByKey合并每一個 key 的所有值,在級聯函數和“零值”中使用。
    //使用combineByKey計算wordcount
    wordsRDD.map(word=>(word,1)).combineByKey(
      (v: Int) => v,
      (c: Int, v: Int) => c+v,
      (c1: Int, c2: Int) => c1 + c2
    ).collect.foreach(println)

    //使用foldByKey計算wordcount
    println("=======foldByKey=========")
    wordsRDD.map(word=>(word,1)).foldByKey(0)(_+_).foreach(println)

    //使用aggregateByKey計算wordcount
    println("=======aggregateByKey============")
    wordsRDD.map(word=>(word,1)).aggregateByKey(0)((u:Int,v)=>u+v,_+_).foreach(println)

foldByKey,aggregateByKey都是由combineByKey實現,并且mapSideCombine=true,因此可以使用這些函數替代goupByKey。

參考

Spark中的combineByKey

databricks gitbooks

在Spark中盡量少使用GroupByKey函數

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,182評論 6 543
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,489評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,290評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,776評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,510評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,866評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,860評論 3 447
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,036評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,585評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,331評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,536評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,058評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,754評論 3 349
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,154評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,469評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,273評論 3 399
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,505評論 2 379

推薦閱讀更多精彩內容