1. 導入各種包
from mxnet import gluon
import mxnet as mx
from mxnet.gluon import nn
from mxnet import ndarray as nd
import matplotlib.pyplot as plt
import cv2
from mxnet import image
from mxnet import autograd
2. 導入數據
我使用cifar10這個數據集,使用gluon自帶的模塊下載到本地并且為了配合后面的網絡,我將大小調整到224*224
def transform(data, label):
data = image.imresize(data, 224, 224)
return data.astype('float32'), label.astype('float32')
cifar10_train = gluon.data.vision.CIFAR10(root='./',train=True, transform=transform)
cifar10_test = gluon.data.vision.CIFAR10(root='./',train=False, transform=transform)
batch_size = 64
train_data = gluon.data.DataLoader(cifar10_train, batch_size, shuffle=True)
test_data = gluon.data.DataLoader(cifar10_test, batch_size, shuffle=False)
3. 加載預訓練模型
gluon提供的很多預訓練模型,我選擇一個簡單的模型AlexNet
首先下載AlexNet模型和模型參數
使用下面的代碼會獲取AlexNet的模型并且加載預訓練好的模型參數,但是鑒于網絡的原因,我提前下好了
alexnet = mx.gluon.model_zoo.vision.alexnet(pretrained=True)#如果pretrained值為True,則會下載預訓練參數,否則是空模型
獲取模型并從本地加載參數
alexnet = mx.gluon.model_zoo.vision.alexnet()
alexnet.load_params('alexnet-44335d1f.params',ctx=mx.gpu())
看下AlexNet網絡結構,發現分為兩部分,features,classifier,而features正好是需要的
print(alexnet)
AlexNet(
(features): HybridSequential(
(0): Conv2D(64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): MaxPool2D(size=(3, 3), stride=(2, 2), padding=(0, 0), ceil_mode=False)
(2): Conv2D(192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(3): MaxPool2D(size=(3, 3), stride=(2, 2), padding=(0, 0), ceil_mode=False)
(4): Conv2D(384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): Conv2D(256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): Conv2D(256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): MaxPool2D(size=(3, 3), stride=(2, 2), padding=(0, 0), ceil_mode=False)
(8): Flatten
)
(classifier): HybridSequential(
(0): Dense(4096, Activation(relu))
(1): Dropout(p = 0.5)
(2): Dense(4096, Activation(relu))
(3): Dropout(p = 0.5)
(4): Dense(1000, linear)
)
)
4. 組合新的網絡
截取想要的features,并且固定參數。這樣防止訓練的時候把預訓練好的參數給搞壞了
featuresnet = alexnet.features
for _, w in featuresnet.collect_params().items():
w.grad_req = 'null'
自己定義后面的網絡,因為數據集是10類,就把最后的輸出從1000改成了10。
def Classifier():
net = nn.HybridSequential()
net.add(nn.Dense(4096, activation="relu"))
net.add(nn.Dropout(.5))
net.add(nn.Dense(4096, activation="relu"))
net.add(nn.Dropout(.5))
net.add(nn.Dense(10))
return net
接著需要把兩部分組合起來,并且對第二部分機進行初始化
net = nn.HybridSequential()
with net.name_scope():
net.add(featuresnet)
net.add(Classifier())
net[1].collect_params().initialize(init=mx.init.Xavier(),ctx=mx.gpu())
net.hybridize()
5. 訓練
最后就是訓練了,看看效果如何
#定義準確率函數
def accuracy(output, label):
return nd.mean(output.argmax(axis=1)==label).asscalar()
def evaluate_accuracy(data_iterator, net, ctx=mx.gpu()):
acc = 0.
for data, label in data_iterator:
data = data.transpose([0,3,1,2])
data = data/255
output = net(data.as_in_context(ctx))
acc += accuracy(output, label.as_in_context(ctx))
return acc / len(data_iterator)
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(
net.collect_params(), 'sgd', {'learning_rate': 0.01})
for epoch in range(1):
train_loss = 0.
train_acc = 0.
test_acc = 0.
for data, label in train_data:
label = label.as_in_context(mx.gpu())
data = data.transpose([0,3,1,2])
data = data/255
with autograd.record():
output = net(data.as_in_context(mx.gpu()))
loss = softmax_cross_entropy(output, label)
loss.backward()
trainer.step(batch_size)
train_loss += nd.mean(loss).asscalar()
train_acc += accuracy(output, label)
test_acc = evaluate_accuracy(test_data, net)
print("Epoch %d. Loss: %f, Train acc %f, Test acc %f" % (
epoch, train_loss/len(train_data),
train_acc/len(train_data),test_acc))
Epoch 0. Loss: 1.249197, Train acc 0.558764, Test acc 0.696756