Python裝飾器高級用法

Python中,裝飾器一般用來修飾函數,實現公共功能,達到代碼復用的目的。在函數定義前加上@xxxx,然后函數就注入了某些行為,很神奇!然而,這只是語法糖而已。

場景

假設,有一些工作函數,用來對數據做不同的處理:

def work_bar(data):
    pass


def work_foo(data):
    pass

我們想在函數調用前/后輸出日志,怎么辦?

傻瓜解法

logging.info('begin call work_bar')
work_bar(1)
logging.info('call work_bar done')

如果有多處代碼調用呢?想想就怕!

函數包裝

傻瓜解法無非是有太多代碼冗余,每次函數調用都要寫一遍logging。可以把這部分冗余邏輯封裝到一個新函數里:

def smart_work_bar(data):
    logging.info('begin call: work_bar')
    work_bar(data)
    logging.info('call doen: work_bar')

這樣,每次調用smart_work_bar即可:

smart_work_bar(1)

# ...

smart_work_bar(some_data)

通用閉包

看上去挺完美……然而,當work_foo也有同樣的需要時,還要再實現一遍smart_work_foo嗎?這樣顯然不科學呀!

別急,我們可以用閉包:

def log_call(func):
    def proxy(*args, **kwargs):
        logging.info('begin call: {name}'.format(name=func.func_name))
        result = func(*args, **kwargs)
        logging.info('call done: {name}'.format(name=func.func_name))
        return result
    return proxy

這個函數接收一個函數對象(被代理函數)作為參數,返回一個代理函數。調用代理函數時,先輸出日志,然后調用被代理函數,調用完成后再輸出日志,最后返回調用結果。這樣,不就達到通用化的目的了嗎?——對于任意被代理函數funclog_call均可輕松應對。

smart_work_bar = log_call(work_bar)
smart_work_foo = log_call(work_foo)

smart_work_bar(1)
smart_work_foo(1)

# ...

smart_work_bar(some_data)
smart_work_foo(some_data)

1行中,log_call接收參數work_bar,返回一個代理函數proxy,并賦給smart_work_bar。第4行中,調用smart_work_bar,也就是代理函數proxy,先輸出日志,然后調用func也就是work_bar,最后再輸出日志。注意到,代理函數中,func與傳進去的work_bar對象緊緊關聯在一起了,這就是閉包

再提一下,可以覆蓋被代理函數名,以smart_為前綴取新名字還是顯得有些累贅:

work_bar = log_call(work_bar)
work_foo = log_call(work_foo)

work_bar(1)
work_foo(1)

語法糖

先來看看以下代碼:

def work_bar(data):
    pass
work_bar = log_call(work_bar)


def work_foo(data):
    pass
work_foo = log_call(work_foo)

雖然代碼沒有什么冗余了,但是看是去還是不夠直觀。這時候,語法糖來了~~~

@log_call
def work_bar(data):
    pass

因此,注意一點(劃重點啦),這里@log_call的作用只是:告訴Python編譯器插入代碼work_bar = log_call(work_bar)

求值裝飾器

先來猜猜裝飾器eval_now有什么作用?

def eval_now(func):
    return func()

看上去好奇怪哦,沒有定義代理函數,算裝飾器嗎?

@eval_now
def foo():
    return 1

print foo

這段代碼輸出1,也就是對函數進行調用求值。那么到底有什么用呢?直接寫foo = 1不行么?在這個簡單的例子,這么寫當然可以啦。來看一個更復雜的例子——初始化一個日志對象:

# some other code before...

# log format
formatter = logging.Formatter(
    '[%(asctime)s] %(process)5d %(levelname) 8s - %(message)s',
    '%Y-%m-%d %H:%M:%S',
)

# stdout handler
stdout_handler = logging.StreamHandler(sys.stdout)
stdout_handler.setFormatter(formatter)
stdout_handler.setLevel(logging.DEBUG)

# stderr handler
stderr_handler = logging.StreamHandler(sys.stderr)
stderr_handler.setFormatter(formatter)
stderr_handler.setLevel(logging.ERROR)

# logger object
logger = logging.Logger(__name__)
logger.setLevel(logging.DEBUG)
logger.addHandler(stdout_handler)
logger.addHandler(stderr_handler)

# again some other code after...

eval_now的方式:

# some other code before...

@eval_now
def logger():
    # log format
    formatter = logging.Formatter(
        '[%(asctime)s] %(process)5d %(levelname) 8s - %(message)s',
        '%Y-%m-%d %H:%M:%S',
    )

    # stdout handler
    stdout_handler = logging.StreamHandler(sys.stdout)
    stdout_handler.setFormatter(formatter)
    stdout_handler.setLevel(logging.DEBUG)

    # stderr handler
    stderr_handler = logging.StreamHandler(sys.stderr)
    stderr_handler.setFormatter(formatter)
    stderr_handler.setLevel(logging.ERROR)

    # logger object
    logger = logging.Logger(__name__)
    logger.setLevel(logging.DEBUG)
    logger.addHandler(stdout_handler)
    logger.addHandler(stderr_handler)

    return logger

# again some other code after...

兩段代碼要達到的目的是一樣的,但是后者顯然更清晰,頗有代碼塊的風范。更重要的是,函數調用在局部名字空間完成初始化,避免臨時變量(如formatter等)污染外部的名字空間(比如全局)。

帶參數裝飾器

定義一個裝飾器,用于記錄慢函數調用:

def log_slow_call(func):
    def proxy(*args, **kwargs):
        start_ts = time.time()
        result = func(*args, **kwargs)
        end_ts = time.time()

        seconds = start_ts - end_ts
        if seconds > 1:
        logging.warn('slow call: {name} in {seconds}s'.format(
            name=func.func_name,
            seconds=seconds,
        ))

        return result

    return proxy

35行分別在函數調用前后采樣當前時間,第7行計算調用耗時,耗時大于一秒輸出一條警告日志。

@log_slow_call
def sleep_seconds(seconds):
    time.sleep(seconds)

sleep_seconds(0.1)  # 沒有日志輸出

sleep_seconds(2)    # 輸出警告日志

然而,閾值設置總是要視情況決定,不同的函數可能會設置不同的值。如果閾值有辦法參數化就好了:

def log_slow_call(func, threshold=1):
    def proxy(*args, **kwargs):
        start_ts = time.time()
        result = func(*args, **kwargs)
        end_ts = time.time()

        seconds = start_ts - end_ts
        if seconds > threshold:
        logging.warn('slow call: {name} in {seconds}s'.format(
            name=func.func_name,
            seconds=seconds,
        ))

        return result

    return proxy

然而,@xxxx語法糖總是以被裝飾函數為參數調用裝飾器,也就是說沒有機會傳遞threshold參數。怎么辦呢?——用一個閉包封裝threshold參數:

def log_slow_call(threshold=1):
    def decorator(func):
        def proxy(*args, **kwargs):
            start_ts = time.time()
            result = func(*args, **kwargs)
            end_ts = time.time()

            seconds = start_ts - end_ts
            if seconds > threshold:
            logging.warn('slow call: {name} in {seconds}s'.format(
                name=func.func_name,
                seconds=seconds,
            ))

            return result

        return proxy

    return decorator


@log_slow_call(threshold=0.5)
def sleep_seconds(seconds):
    time.sleep(seconds)

這樣,log_slow_call(threshold=0.5)調用返回函數decorator,函數擁有閉包變量threshold,值為0.5decorator再裝飾sleep_seconds

采用默認閾值,函數調用還是不能省略:

@log_slow_call()
def sleep_seconds(seconds):
    time.sleep(seconds)

處女座可能會對第一行這對括號感到不爽,那么可以這樣改進:

def log_slow_call(func=None, threshold=1):
    def decorator(func):
        def proxy(*args, **kwargs):
            start_ts = time.time()
            result = func(*args, **kwargs)
            end_ts = time.time()

            seconds = start_ts - end_ts
            if seconds > threshold:
            logging.warn('slow call: {name} in {seconds}s'.format(
                name=func.func_name,
                seconds=seconds,
            ))

            return result

        return proxy

    if func is None:
        return decorator
    else:
        return decorator(func)

這種寫法兼容兩種不同的用法,用法A默認閾值(無調用);用法B自定義閾值(有調用)。

# Case A
@log_slow_call
def sleep_seconds(seconds):
    time.sleep(seconds)


# Case B
@log_slow_call(threshold=0.5)
def sleep_seconds(seconds):
    time.sleep(seconds)

用法A中,發生的事情是log_slow_call(sleep_seconds),也就是func參數是非空的,這是直接調decorator進行包裝并返回(閾值是默認的)。

用法B中,先發生的是log_slow_call(threshold=0.5)func參數為空,直接返回新的裝飾器decorator,關聯閉包變量threshold,值為0.5;然后,decorator再裝飾函數sleep_seconds,即decorator(sleep_seconds)。注意到,此時threshold關聯的值是0.5,完成定制化。

你可能注意到了,這里最好使用關鍵字參數這種調用方式——使用位置參數會很丑陋:

# Case B-
@log_slow_call(None, 0.5)
def sleep_seconds(seconds):
    time.sleep(seconds)

當然了,函數調用盡量使用關鍵字參數是一種極佳實踐,含義清晰,在參數很多的情況下更是如此。

智能裝飾器

上節介紹的寫法,嵌套層次較多,如果每個類似的裝飾器都用這種方法實現,還是比較費勁的(腦子不夠用),也比較容易出錯。

假設有一個智能裝飾器smart_decorator,修飾裝飾器log_slow_call,便可獲得同樣的能力。這樣,log_slow_call定義將變得更清晰,實現起來也更省力啦:

@smart_decorator
def log_slow_call(func, threshold=1):
    def proxy(*args, **kwargs):
        start_ts = time.time()
        result = func(*args, **kwargs)
        end_ts = time.time()

        seconds = start_ts - end_ts
        if seconds > threshold:
        logging.warn('slow call: {name} in {seconds}s'.format(
            name=func.func_name,
            seconds=seconds,
        ))

        return result

    return proxy

腦洞開完,smart_decorator如何實現呢?其實也簡單:

def smart_decorator(decorator):

    def decorator_proxy(func=None, **kwargs):
        if func is not None:
            return decorator(func=func, **kwargs)

        def decorator_proxy(func):
            return decorator(func=func, **kwargs)

        return decorator_proxy

    return decorator_proxy

smart_decorator實現了以后,設想就成立了!這時,log_slow_call,就是decorator_proxy(外層),關聯的閉包變量decorator是本節最開始定義的log_slow_call(為了避免歧義,稱為real_log_slow_call)。log_slow_call支持以下各種用法:

# Case A
@log_slow_call
def sleep_seconds(seconds):
    time.sleep(seconds)

用法A中,執行的是decorator_proxy(sleep_seconds)(外層),func非空,kwargs為空;直接執行decorator(func=func, **kwargs),即real_log_slow_call(sleep_seconds),結果是關聯默認參數的proxy

# Case B
# Same to Case A
@log_slow_call()
def sleep_seconds(seconds):
    time.sleep(seconds)

用法B中,先執行decorator_proxy()funckwargs均為空,返回decorator_proxy對象(內層);再執行decorator_proxy(sleep_seconds)(內層);最后執行decorator(func, **kwargs),等價于real_log_slow_call(sleep_seconds),效果與用法A一致。

# Case C
@log_slow_call(threshold=0.5)
def sleep_seconds(seconds):
    time.sleep(seconds)

用法C中,先執行decorator_proxy(threshold=0.5)func為空但kwargs非空,返回decorator_proxy對象(內層);再執行decorator_proxy(sleep_seconds)(內層);最后執行decorator(sleep_seconds, **kwargs),等價于real_log_slow_call(sleep_seconds, threshold=0.5),閾值實現自定義!

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,321評論 6 543
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,559評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,442評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,835評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,581評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,922評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,931評論 3 447
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,096評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,639評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,374評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,591評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,104評論 5 364
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,789評論 3 349
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,196評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,524評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,322評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,554評論 2 379