SurfaceFlinger是android顯示的核心進程,在整個顯示框架中起到一個承上啟下的作用,“承上”指的是與app進程間的通信,“啟下”指的是與Composer進程的通信。Surfaceflinger本身不進行繪制,是app數據上屏的中樞通路,先來看下SurfaceFlinger在整個顯示流程中的位置。
從顯示流程圖看可知,SurfaceFlinger位于中間層的位置,目前的應用會調起renderthread使用GPU來渲染,應用側使用surface來管理顯示數據,surfaceflinger使用layer來對應應用側的surface,surfaceflinger會根據合成的方式,選擇device還是GPU合成,最后將layer數據提交給Composer進程,進而通過display 驅動上屏。本文就來研究下app和SurfaceFlinger之間的通信,主要針對native層的分析,代碼基于android11。
APP與SurfaceFlinger之間的連接
首先框架會創建surfaceControl來管理surface,在jni層會創建一個surfaceComposerClient對象,這個對象是負責與SurfaceFlinger進程通信的重要載體。
文件:frameworks/base/core/jni/android_view_SurfaceControl.cpp
static jlong nativeCreate(JNIEnv* env, jclass clazz, jobject sessionObj,
jstring nameStr, jint w, jint h, jint format, jint flags, jlong parentObject,
jobject metadataParcel) {
ScopedUtfChars name(env, nameStr);
sp<SurfaceComposerClient> client;
if (sessionObj != NULL) {
client = android_view_SurfaceSession_getClient(env, sessionObj);
} else {
// 如果java側沒有該對象則創建SurfaceComposerClient對象
client = SurfaceComposerClient::getDefault();
}
SurfaceControl *parent = reinterpret_cast<SurfaceControl*>(parentObject);
sp<SurfaceControl> surface;
...
// 通過SurfaceComposerClient創建一個Surface
status_t err = client->createSurfaceChecked(
String8(name.c_str()), w, h, format, &surface, flags, parent, std::move(metadata));
...
// 返回給上層surface對象
return reinterpret_cast<jlong>(surface.get());
}
文件:frameworks/native/libs/gui/SurfaceComposerClient.cpp
sp<SurfaceComposerClient> SurfaceComposerClient::getDefault() {
return DefaultComposerClient::getComposerClient();
}
class DefaultComposerClient: public Singleton<DefaultComposerClient> {
Mutex mLock;
sp<SurfaceComposerClient> mClient;
friend class Singleton<ComposerService>;
public:
static sp<SurfaceComposerClient> getComposerClient() {
// 使用單例模式創建DefaultComposerClient 對象
DefaultComposerClient& dc = DefaultComposerClient::getInstance();
Mutex::Autolock _l(dc.mLock);
if (dc.mClient == nullptr) {
// 創建SurfaceComposerClient 對象
dc.mClient = new SurfaceComposerClient;
}
return dc.mClient;
}
};
// 由于SurfaceComposerClient是sp指針,第一次創建時會執行onFirstRef 函數
void SurfaceComposerClient::onFirstRef() {
sp<ISurfaceComposer> sf(ComposerService::getComposerService());
if (sf != nullptr && mStatus == NO_INIT) {
sp<ISurfaceComposerClient> conn;
conn = sf->createConnection();
if (conn != nullptr) {
mClient = conn;
mStatus = NO_ERROR;
}
}
}
//在getComposerService 函數中調connectLocked來get到SurfaceFlinger服務并注冊了死亡監聽
void ComposerService::connectLocked() {
const String16 name("SurfaceFlinger");
while (getService(name, &mComposerService) != NO_ERROR) {
usleep(250000);
}
assert(mComposerService != nullptr);
// Create the death listener.
class DeathObserver : public IBinder::DeathRecipient {
ComposerService& mComposerService;
virtual void binderDied(const wp<IBinder>& who) {
ALOGW("ComposerService remote (surfaceflinger) died [%p]",
who.unsafe_get());
mComposerService.composerServiceDied();
}
public:
explicit DeathObserver(ComposerService& mgr) : mComposerService(mgr) { }
};
mDeathObserver = new DeathObserver(*const_cast<ComposerService*>(this));
IInterface::asBinder(mComposerService)->linkToDeath(mDeathObserver);
}
文件:frameworks/native/services/surfaceflinger/surfaceflinger.cpp
// 與SurfaceFlinger建立聯系,Client持有SurfaceFlinger對象
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() {
const sp<Client> client = new Client(this);
return client->initCheck() == NO_ERROR ? client : nullptr;
}
看注釋,至此完成了從SurfaceControl-> SurfaceComposerClient -> SurfaceFlinger的連接過程。應用要創建Surface時,對應SurfaceFlinger會創建layer與之對應。
文件:frameworks/native/libs/gui/SurfaceComposerClient.cpp
status_t SurfaceComposerClient::createSurfaceChecked(const String8& name, uint32_t w, uint32_t h,
PixelFormat format,
sp<SurfaceControl>* outSurface, uint32_t flags,
SurfaceControl* parent, LayerMetadata metadata,
uint32_t* outTransformHint) {
sp<SurfaceControl> sur;
...
// 會執行到Client.cpp里面的createSurface
err = mClient->createSurface(name, w, h, format, flags, parentHandle, std::move(metadata),
&handle, &gbp, &transformHint);
...
ALOGE_IF(err, "SurfaceComposerClient::createSurface error %s", strerror(-err));
if (err == NO_ERROR) {
// 根據返回的handle 和 gbp 創建 SurfaceControl
*outSurface = new SurfaceControl(this, handle, gbp, transformHint);
}
}
return err;
}
文件: frameworks/native/services/surfaceflinger/Client.cpp
status_t Client::createSurface(const String8& name, uint32_t w, uint32_t h, PixelFormat format,
uint32_t flags, const sp<IBinder>& parentHandle,
LayerMetadata metadata, sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp, uint32_t* outTransformHint) {
// We rely on createLayer to check permissions.
return mFlinger->createLayer(name, this, w, h, format, flags, std::move(metadata), handle, gbp,
parentHandle, nullptr, outTransformHint);
}
文件: frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
tatus_t SurfaceFlinger::createLayer(const String8& name, const sp<Client>& client, uint32_t w,
uint32_t h, PixelFormat format, uint32_t flags,
LayerMetadata metadata, sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp,
const sp<IBinder>& parentHandle, const sp<Layer>& parentLayer,
...
sp<Layer> layer;
...
switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
case ISurfaceComposerClient::eFXSurfaceBufferQueue:
// 對于surface類型創建layer類型,主要看下帶有BufferQueue的layer
result = createBufferQueueLayer(client, std::move(uniqueName), w, h, flags,
std::move(metadata), format, handle, gbp, &layer);
break;
...
// 將創建的layer放到mCurrentState 里面,SurfaceFlinger內部管理了mCurrentState 和 mDrawingState
result = addClientLayer(client, *handle, *gbp, layer, parentHandle, parentLayer,
addToCurrentState, outTransformHint);
...
setTransactionFlags(eTransactionNeeded);
return result;
}
文件: frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
status_t SurfaceFlinger::createBufferQueueLayer(const sp<Client>& client, std::string name,
uint32_t w, uint32_t h, uint32_t flags,
LayerMetadata metadata, PixelFormat& format,
sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp,
sp<Layer>* outLayer) {
...
sp<BufferQueueLayer> layer;
LayerCreationArgs args(this, client, std::move(name), w, h, flags, std::move(metadata));
...
Mutex::Autolock lock(mStateLock);
layer = getFactory().createBufferQueueLayer(args);
...
if (err == NO_ERROR) {
// 在surfaceflinger側 new了一個handle,這個handle指向這個layer
*handle = layer->getHandle();
//gbp是創建的BufferQueueProducer對象
*gbp = layer->getProducer();
*outLayer = layer;
}
ALOGE_IF(err, "createBufferQueueLayer() failed (%s)", strerror(-err));
return err;
}
文件: frameworks/native/services/surfaceflinger/SurfaceFlingerDefaultFactory.cpp
sp<BufferQueueLayer> DefaultFactory::createBufferQueueLayer(const LayerCreationArgs& args) {
// new 了BufferQueueLayer對象,sp指針第一次創建時會執行onFirstRef 函數
return new BufferQueueLayer(args);
}
文件:frameworks/native/services/surfaceflinger/BufferQueueLayer.cpp
void BufferQueueLayer::onFirstRef() {
BufferLayer::onFirstRef();
// Creates a custom BufferQueue for SurfaceFlingerConsumer to use
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
// 創建一個BufferQueue對象,跟著創建一個BufferQueueCore, BufferQueueProducer和 BufferQueueConsumer對象
mFlinger->getFactory().createBufferQueue(&producer, &consumer, true);
// 對producer 的一個封裝,MonitoredProducer實質與 producer無差別
mProducer = mFlinger->getFactory().createMonitoredProducer(producer, mFlinger, this);
// 創建BufferLayerConsumer ,首先創建父類ConsumerBase 對象
mConsumer =
mFlinger->getFactory().createBufferLayerConsumer(consumer, mFlinger->getRenderEngine(),
mTextureName, this);
...
// 注冊了一個監聽,將BufferQueueLayer的函數方法注冊到BufferQueueCore里面,說明當Buffer有變化時會通知BufferQueueLayer執行相應的動作
mContentsChangedListener = new ContentsChangedListener(this);
mConsumer->setContentsChangedListener(mContentsChangedListener);
mConsumer->setName(String8(mName.data(), mName.size()));
// BufferQueueCore::mMaxDequeuedBufferCount is default to 1
// 設置producer最大dequeue的buffer數量
if (!mFlinger->isLayerTripleBufferingDisabled()) {
mProducer->setMaxDequeuedBufferCount(2);
}
}
文件:frameworks/native/services/surfaceflinger/Layer.cpp
sp<IBinder> Layer::getHandle() {
Mutex::Autolock _l(mLock);
if (mGetHandleCalled) {
ALOGE("Get handle called twice" );
return nullptr;
}
mGetHandleCalled = true;
// 創建一個handle對應layer
return new Handle(mFlinger, this);
}
看注釋,SurfaceFlinger側創建了handle和GraphicsBufferProducer對象給到SurfaceControl,handle 指向surfaceflinger的layer,GraphicsBufferProducer 提供surface對Buffer的操作接口,上層操作surface的handle來作用到surfaceflinger的layer。至此,surfaceflinger創建layer的流程分析完了,比較繞的地方是涉及BufferQueue對象之間的關系,用一副類的關系圖來說明之間的關系。
APP與SurfaceFlinger之間數據的傳遞
現在應用一般采用GPU去渲染加速,GPU操作在RenderThread里(HWUI 里面的邏輯很復雜,后續會進行剖析),應用要繪制數據首先需要申請一塊Buffer,由前面分析可知,應用是一個GraphicsBufferProducer的角色,故可以通過dequeueBuffer來向surfaceflinger申請一塊Buffer。
DequeueBuffer
文件: frameworks/native/libs/gui/Surface.cpp
int Surface::dequeueBuffer(android_native_buffer_t** buffer, int* fenceFd) {
ATRACE_CALL();
ALOGV("Surface::dequeueBuffer");
...
// 從應用進程調到SurfaceFlinger進程,實現在SurfaceFlinger側
status_t result = mGraphicBufferProducer->dequeueBuffer(&buf, &fence, reqWidth, reqHeight,
reqFormat, reqUsage, &mBufferAge,
enableFrameTimestamps ? &frameTimestamps
: nullptr);
...
// 后續會通過requestBuffer拿到Buffer
sp<GraphicBuffer>& gbuf(mSlots[buf].buffer);
...
// requestBuffer將通過importBuffer將Buffer映射到應用進程
result = mGraphicBufferProducer->requestBuffer(buf, &gbuf);
...
*buffer = gbuf.get();
...
mDequeuedSlots.insert(buf);
return OK;
}
文件: frameworks/native/libs/gui/BufferQueueProducer.cpp
status_t BufferQueueProducer::dequeueBuffer(int* outSlot, sp<android::Fence>* outFence,
uint32_t width, uint32_t height, PixelFormat format,
uint64_t usage, uint64_t* outBufferAge,
FrameEventHistoryDelta* outTimestamps) {
...
int found = BufferItem::INVALID_BUFFER_SLOT;
while (found == BufferItem::INVALID_BUFFER_SLOT) {
// 優先從mFreeBuffers 里面獲取slot, 若沒有則從mFreeSlots 里面獲取,從mFreeSlots 里面獲取的都是還未分配Buffer的slot
status_t status = waitForFreeSlotThenRelock(FreeSlotCaller::Dequeue, lock, &found);
...
}
if (returnFlags & BUFFER_NEEDS_REALLOCATION) {
...
//若得到的slot對應的buffer為空則重新分配一塊GraphicsBuffer
sp<GraphicBuffer> graphicBuffer = new GraphicBuffer(
width, height, format, BQ_LAYER_COUNT, usage,
{mConsumerName.string(), mConsumerName.size()});
...
mSlots[*outSlot].mGraphicBuffer = graphicBuffer;
...
}
文件: frameworks/native/libs/gui/BufferQueueProducer.cpp
status_t BufferQueueProducer::requestBuffer(int slot, sp<GraphicBuffer>* buf) {
...
mSlots[slot].mRequestBufferCalled = true;
// GraphicsBuffer跨進程傳遞執行unflatten
*buf = mSlots[slot].mGraphicBuffer;
return NO_ERROR;
}
文件: frameworks/native/libs/ui/GraphicBuffer.cpp
status_t GraphicBuffer::unflatten(void const*& buffer, size_t& size, int const*& fds,
size_t& count) {
...
if (handle != nullptr) {
buffer_handle_t importedHandle;
status_t err = mBufferMapper.importBuffer(handle, uint32_t(width), uint32_t(height),
uint32_t(layerCount), format, usage, uint32_t(stride), &importedHandle);
...
handle = importedHandle;
...
return NO_ERROR;
}
應用的surface執行dequeueBuffer是在應用進程,具體實現是通過BufferQueueProducer的dequeueBuffer,是在SurfaceFlinger進程,所以需要通過requestBuffer將Buffer映射到應用進程,具體實現是通過importBuffer。真正分配Buffer的地方是在ion,ion是怎么分配Buffer的,以及Buffer怎么實現app和SurfaceFlinger共享,先用一張簡圖概述下,后續會分析。
至此app就拿到了可繪制的Buffer,GPU可以將數據渲染到這塊Buffer上。GPU將數據渲染到Buffer后,會執行eglSwapBuffers交換front和back buffer,eglSwapBuffers會調用queueBuffer,android系統用queueBuffer來請求vsync 喚醒SurfaceFlinger刷新。
queueBuffer
文件: frameworks/native/libs/gui/Surface.cpp
int Surface::queueBuffer(android_native_buffer_t* buffer, int fenceFd) {
...
// dequeue出來的buffer對應的slot
int i = getSlotFromBufferLocked(buffer);
...
// 傳入一些參數,其中 fenceFd 是由GPU帶過來的,表示GPU渲染是否完成,這里為acquireFence
IGraphicBufferProducer::QueueBufferInput input(timestamp, isAutoTimestamp,
static_cast<android_dataspace>(mDataSpace), crop, mScalingMode,
mTransform ^ mStickyTransform, fence, mStickyTransform,
mEnableFrameTimestamps);
...
// 調到SurfaceFlinger進程的queueBuffer
status_t err = mGraphicBufferProducer->queueBuffer(i, input, &output);
...
}
文件: frameworks/native/libs/gui/BufferQueueProducer.cpp
status_t BufferQueueProducer::queueBuffer(int slot,
const QueueBufferInput &input, QueueBufferOutput *output) {
...
BufferItem item;
...
// 將數據同步到item對象
item.mAcquireCalled = mSlots[slot].mAcquireCalled;
item.mGraphicBuffer = mSlots[slot].mGraphicBuffer;
item.mCrop = crop;
item.mTransform = transform &
~static_cast<uint32_t>(NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY);
item.mTransformToDisplayInverse =
(transform & NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY) != 0;
item.mScalingMode = static_cast<uint32_t>(scalingMode);
item.mTimestamp = requestedPresentTimestamp;
item.mIsAutoTimestamp = isAutoTimestamp;
item.mDataSpace = dataSpace;
item.mHdrMetadata = hdrMetadata;
item.mFrameNumber = currentFrameNumber;
item.mSlot = slot;
item.mFence = acquireFence;
item.mFenceTime = acquireFenceTime;
item.mIsDroppable = mCore->mAsyncMode ||
(mConsumerIsSurfaceFlinger && mCore->mQueueBufferCanDrop) ||
(mCore->mLegacyBufferDrop && mCore->mQueueBufferCanDrop) ||
(mCore->mSharedBufferMode && mCore->mSharedBufferSlot == slot);
item.mSurfaceDamage = surfaceDamage;
item.mQueuedBuffer = true;
item.mAutoRefresh = mCore->mSharedBufferMode && mCore->mAutoRefresh;
item.mApi = mCore->mConnectedApi;
...
// 把item放到mQueue里面
mCore->mQueue.push_back(item);
// 這里的mCore->mConsumerListener 實際上為ConsumerBase對象
frameAvailableListener = mCore->mConsumerListener;
...
if (frameAvailableListener != nullptr) {
frameAvailableListener->onFrameAvailable(item);
}...
}
文件: frameworks/native/libs/gui/ConsumerBase.cpp
void ConsumerBase::onFrameAvailable(const BufferItem& item) {
CB_LOGV("onFrameAvailable");
sp<FrameAvailableListener> listener;
{ // scope for the lock
Mutex::Autolock lock(mFrameAvailableMutex);
listener = mFrameAvailableListener.promote();
}
if (listener != nullptr) {
CB_LOGV("actually calling onFrameAvailable");
// listener實際上是BufferQueueLayer對象
listener->onFrameAvailable(item);
}
}
根據類圖關系,frameAvailableListener 實際上是ConsumerBase 對象,在ConsumerBase 初始化的時候進行賦值,通過 mConsumer->consumerConnect(proxy, controlledByApp)接口,所以會調到ConsumerBase::onFrameAvailable, 而mFrameAvailableListener 是BufferQueueLayer -> setContentsChangedListener(mContentsChangedListener) 設的,實際上是 BufferQueueLayer對象,因此最后走到BufferQueueLayer::onFrameAvailable 邏輯里面了。
文件: frameworks/native/services/surfaceflinger/BufferQueueLayer.cpp
void BufferQueueLayer::onFrameAvailable(const BufferItem& item) {
...
// 將item 放到mQueueItems里面
mQueueItems.push_back(item);
mQueuedFrames++;
...
// 申請vsync去觸發surfaceflinger刷新
mFlinger->signalLayerUpdate();
mConsumer->onBufferAvailable(item);
}
文件: frameworks/native/services/surfaceflinger/Scheduler/EventThread.cpp
void EventThread::requestNextVsync(const sp<EventThreadConnection>& connection) {
if (connection->resyncCallback) {
connection->resyncCallback();
}
std::lock_guard<std::mutex> lock(mMutex);
if (connection->vsyncRequest == VSyncRequest::None) {
// Vsync請求置為Single
connection->vsyncRequest = VSyncRequest::Single;
mCondition.notify_all();
}
}
讓Surfaceflinger刷新需要2個必要條件: 1. 有requestNextVsync 的請求 2. 軟件vsync計算模型回調 onVSyncEvent創建一個vsyncEvent,涉及到vsync模型,后面會介紹。
到這里,app完成了與SurfaceFlinger的連接以及將應用數據傳給到SurfaceFlinger。這里需要注意的是,其實SurfaceFlinger并不會動Buffer里面的數據,只是中間傳遞的一個過程,Buffer數據是由GPU渲染,display顯示,下篇分析下SurfaceFlinger在刷新時做了哪些動作。