[PyTorch]可以將處理好的數(shù)據(jù)使用torch.save存儲(chǔ)成二進(jìn)制文件方便下一次加載

  • 可以將一些需要處理的文本文件處理一次后就使用torch.save(或者pickle)存儲(chǔ)成二進(jìn)制文件方便下一次加載
def get_and_tokenize_dataset(tokenizer, dataset_dir='wikitext-103', dataset_cache=None, with_labels=False):
    """ Retrieve, tokenize, encode and cache a dataset with optional labels """
    if dataset_cache and os.path.isfile(dataset_cache):
        logger.info("Load encoded dataset from cache at %s", dataset_cache)
        encoded_dataset = torch.load(dataset_cache)
    else:
        # If the dataset is in our list of DATASETS_URL, use this url, otherwise, look for 'train.txt' and 'valid.txt' files
        if dataset_dir in DATASETS_URL:
            dataset_map = DATASETS_URL[dataset_dir]
        else:
            dataset_map = {'train': os.path.join(dataset_dir, 'train.txt'),
                           'valid': os.path.join(dataset_dir, 'valid.txt')}

        logger.info("Get dataset from %s", dataset_dir)
        # Download and read dataset and replace a few token for compatibility with the Bert tokenizer we are using
        dataset = {}
        for split_name in dataset_map.keys():
            dataset_file = cached_path(dataset_map[split_name])
            with open(dataset_file, "r", encoding="utf-8") as f:
                all_lines = f.readlines()
                dataset[split_name] = [
                        line.strip(' ').replace('<unk>', '[UNK]').replace('\n', '[SEP]' if not with_labels else '')
                        for line in tqdm(all_lines)]

        # If we have labels, download and and convert labels in integers
        labels = {}
        if with_labels:
            label_conversion_map = DATASETS_LABELS_CONVERSION[dataset_dir]
            for split_name in DATASETS_LABELS_URL[dataset_dir]:
                dataset_file = cached_path(dataset_map['labels'][split_name])
                with open(dataset_file, "r", encoding="utf-8") as f:
                    all_lines = f.readlines()
                    labels[split_name] = [label_conversion_map[line.strip()] for line in tqdm(all_lines)]

        # Tokenize and encode the dataset
        logger.info("Tokenize and encode the dataset")
        logging.getLogger("pytorch_pretrained_bert.tokenization").setLevel(logging.ERROR)  # No warning on sample size
        def encode(obj):
            if isinstance(obj, str):
                return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj))
            if isinstance(obj, dict):
                return dict((n, encode(o)) for n, o in obj.items())
            return list(encode(o) for o in tqdm(obj))
        encoded_dataset = encode(dataset)

        # Add labels if needed, or if we are doing language modeling, add number of words to get word-level ppl and gather in one list
        for split_name in ['train', 'valid']:
            if with_labels:
                encoded_dataset[split_name + '_labels'] = labels[split_name]
            else:
                encoded_dataset[split_name] = [ind for line in encoded_dataset[split_name] for ind in line]
                encoded_dataset[split_name + '_num_words'] = sum(len(line.split(' ')) for line in dataset[split_name])

        # Save to cache
        if dataset_cache:
            logger.info("Save encoded dataset to cache at %s", dataset_cache)
            torch.save(encoded_dataset, dataset_cache)

    return encoded_dataset
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書(shū)系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,698評(píng)論 6 539
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 99,202評(píng)論 3 426
  • 文/潘曉璐 我一進(jìn)店門(mén),熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人,你說(shuō)我怎么就攤上這事。” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 177,742評(píng)論 0 382
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我,道長(zhǎng),這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 63,580評(píng)論 1 316
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 72,297評(píng)論 6 410
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 55,688評(píng)論 1 327
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,693評(píng)論 3 444
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 42,875評(píng)論 0 289
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 49,438評(píng)論 1 335
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 41,183評(píng)論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 43,384評(píng)論 1 372
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,931評(píng)論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,612評(píng)論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 35,022評(píng)論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 36,297評(píng)論 1 292
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 52,093評(píng)論 3 397
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 48,330評(píng)論 2 377

推薦閱讀更多精彩內(nèi)容