Python collections使用

collections

collections為python提供了一些加強版的數據結構,當前有:

>>> collections.__all__
['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList', 'UserString', 'Counter', 'OrderedDict', 'ChainMap', 'Awaitable', 'Coroutine', 'AsyncIterable', 'AsyncIterator', 'AsyncGenerator', 'Hashable', 'Iterable', 'Iterator', 'Generator', 'Reversible', 'Sized', 'Container', 'Callable', 'Collection', 'Set', 'MutableSet', 'Mapping', 'MutableMapping', 'MappingView', 'KeysView', 'ItemsView', 'ValuesView', 'Sequence', 'MutableSequence', 'ByteString']

這里暫時把常見的,我用到的數據結構整理出來,之后有時間再繼續添加。

1.OrderedDict

OrderedDict 可以理解為有序的dict,底層源碼是通過雙向鏈表來實現,每一個元素為一個map存儲key-value

>>> p = collections.OrderedDict()
>>> p["a"]=1
>>> p["b"]=2
>>> p["c"]=3
>>> print(p)
OrderedDict([('a', 1), ('b', 2), ('c', 3)])

OrderedDict提供了下面的一些api。

>>> p.
p.clear(        p.fromkeys(     p.items(        p.move_to_end(  p.popitem(      p.update(
p.copy(         p.get(          p.keys(         p.pop(          p.setdefault(   p.values(

簡單地試一下updatepopmove_to_endclear

>>> keys=["apple", "banana", "cat"]
>>> value=[4, 5, 6]
# update
>>> p.update(zip(keys,value))
>>> p
OrderedDict([('a', 1), ('b', 2), ('c', 3), ('apple', 4), ('banana', 5), ('cat', 6)])
# pop
>>> p.pop('a')
1
>>> p
OrderedDict([('b', 2), ('c', 3), ('apple', 4), ('banana', 5), ('cat', 6)])
# move_to_end
>>> p.move_to_end('b')
>>> p
OrderedDict([('c', 3), ('apple', 4), ('banana', 5), ('cat', 6), ('b', 2)])
# del
>>> del(p['c'])
>>> p
OrderedDict([('apple', 4), ('banana', 5), ('cat', 6), ('b', 2)])
# clear
>>> p.clear()
>>> p
OrderedDict()

2.namedtuple

tuple太長的時候,有時候就不知道數據的對應關系,namedtuple就是給tuple的元素命名。

>>> Point = namedtuple('Point', ['x', 'y'])
>>> Point.__doc__                   # docstring for the new class
'Point(x, y)'
>>> p = Point(11, y=22)             # instantiate with positional args or keywords

namedtuple既支持tupleindex的訪問方式,也支持通過屬性訪問

>>> p[0] + p[1]                     # indexable like a plain tuple
33
>>> x, y = p                        # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y                       # fields also accessible by name
33

namedtupledict的互轉,嚴格說是與OrderedDict互轉,因為_asdict返回的是一個OrderedDict

>>> d = p._asdict()                 # convert to a dictionary
>>> d
OrderedDict([('x', 11), ('y', 22)])
>>> Point(**d)                      # convert from a dictionary Point(x=11, y=22)
>>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
Point(x=100, y=22)

關于namedtuple的思考,我覺得大多數情況下,namedtuple都是可以用OrderedDict完美替換的,但是如果說我們需要一個OrderedDict模板的時候,像如下情況,namedtuple就更加有效率:

>>> a=Point(1,1)
>>> b=Point(2,2)
>>> a
Point(x=1, y=1)
>>> b
Point(x=2, y=2)

3.deque

deque是一個雙向鏈表,針對list連續的數據結構插入和刪除進行優化。提供以下的api:

>>> deque.
deque.append(      deque.clear(       deque.count(       deque.extendleft(  deque.insert(      deque.mro(         deque.popleft(     deque.reverse(
deque.appendleft(  deque.copy(        deque.extend(      deque.index(       deque.maxlen       deque.pop(         deque.remove(      deque.rotate(

簡單體驗一把rotatereverse

>>> a=deque(range(6))
>>> a
deque([0, 1, 2, 3, 4, 5])
>>> a.rotate()
>>> a
deque([5, 0, 1, 2, 3, 4])
>>> a.reverse()
>>> a
deque([4, 3, 2, 1, 0, 5])

4.defaultdict

defaultdict當修改未初始化的key-value時,會用默認值替換,其他功能與dict相同:

>>> a=defaultdict(list)         # list's default value is []
>>> a["first"].append(1)
>>> a
defaultdict(<class 'list'>, {'first': [1]})
>>> a["second"].append(1)
>>> a
defaultdict(<class 'list'>, {'first': [1], 'second': [1]})
>>> b=defaultdict(int)          # int's default value is 0
>>> b["a"] +=1
>>> b["b"] +=10
>>> b

同時初始化時,可以通過callback函數傳入初始化值:

>>> c=defaultdict(lambda :1)    # default value is 1
>>> c["c"] +=1
>>> c
defaultdict(<function <lambda> at 0x101a25488>, {'c': 2})

5.Counter

Counterdict的子類,所以操作同dict,在此基礎上,又添加了most_common(),elements().

>>> from collections import Counter
>>> a=Counter("abca")
>>> a
Counter({'a': 2, 'b': 1, 'c': 1})
>>> a["a"]
2
>>> a.elements()
<itertools.chain object at 0x10190ed30>
>>> sorted(a.elements())
['a', 'a', 'b', 'c']
>>> a.most_common(1)
[('a', 2)]
>>> a.most_common()
[('a', 2), ('b', 1), ('c', 1)]

小結

嗯,通過學習collections,我覺得自己的script可以寫得更加pythonic,哈哈,希望明天會更好!Work by day, study by month, plan by year.

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,546評論 6 533
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,570評論 3 418
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,505評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,017評論 1 313
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,786評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,219評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,287評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,438評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,971評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,796評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,995評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,540評論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,230評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,662評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,918評論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,697評論 3 392
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,991評論 2 374

推薦閱讀更多精彩內容