數(shù)量生態(tài)學(xué)||多元回歸樹

多元回歸樹(Multivariate Regression Trees,MRT)是單元回歸樹的拓展,是一種對(duì)一系列連續(xù)型變量遞歸劃分成多個(gè)類群的聚類方法,是在決策樹(decision-trees)基礎(chǔ)上發(fā)展起來的一種較新的分類技術(shù)。其目的是在定量或分類解釋變量的控制下遞歸劃分一個(gè)定量變量。這樣的分類方式有時(shí)也稱為約束聚類或者導(dǎo)向聚類。同一般回歸模型一樣,MRT也需要因變量(響應(yīng)變量,群落學(xué)中一般是物種數(shù)據(jù))和自變量(預(yù)測(cè)變量,一般為環(huán)境因子數(shù)據(jù))。不同的是, MRT不需要在響應(yīng)變量和預(yù)測(cè)變量之間建立參數(shù)估計(jì)的回歸關(guān)系而是以預(yù)測(cè)變量為分類節(jié)點(diǎn),利用二歧式的分割法(binary split), 將由響應(yīng)變量定義的空間(樣方)逐步劃分為盡可能同質(zhì)的類別,每一次劃分都由某一預(yù)測(cè)變量(環(huán)境因子)的一個(gè)最佳劃分值來完成, 將響應(yīng)變量定義的空間(樣方)分成兩個(gè)部分(也叫節(jié)點(diǎn), node),最佳劃分原則是讓兩個(gè)節(jié)點(diǎn)內(nèi)部的差異盡量小,節(jié)點(diǎn)間的差異盡量大。

MRT是一種強(qiáng)大而可靠的分類方法,即使被劃分的變量含有缺失值,或者響應(yīng)變量與解釋變量是非線性關(guān)系,或解釋變量之間存在高階相互關(guān)系,經(jīng)過交叉驗(yàn)證等一系列篩選過程,多元回歸樹都能夠發(fā)揮很好的預(yù)測(cè)作用。

MRT的計(jì)算有兩個(gè)一起運(yùn)行的程序組成:A數(shù)據(jù)約束劃分;B分組結(jié)果交叉驗(yàn)證。

mvpart程序包中MRT的運(yùn)算流程

  • 將數(shù)據(jù)隨機(jī)劃分成k組(默認(rèn)為10組,xval=10)。
  • 從k組中隨機(jī)選取一組作為“驗(yàn)證組”(testing set),剩余k-1組(訓(xùn)練組,training set)重現(xiàn)混合后通過約束分析,按照組內(nèi)平方和最小的原則,建立回歸樹。
  • 將以上過程重復(fù)k-1次,即依次剔除一組數(shù)據(jù)。
  • 共產(chǎn)生k個(gè)回歸樹,對(duì)于每個(gè)回歸樹的不同分類方案,將驗(yàn)證組(一組數(shù)據(jù))內(nèi)的對(duì)象分配到分組結(jié)果中。計(jì)算每個(gè)回歸樹分類方案的CVRE。
  • 對(duì)回歸樹進(jìn)行剪枝:可以保留CVRE最小的分類方案。也可以根據(jù)“1SE”準(zhǔn)則,保留CVRE在最小的CVRE加1個(gè)標(biāo)準(zhǔn)差范圍內(nèi)最小的分類方案。
  • 為了獲得上面運(yùn)行過程的誤差估計(jì)值,需要重復(fù)多次(100次或500次)將對(duì)象隨機(jī)分配為k組。
  • 置換檢驗(yàn)保留具有最小CVRE誤差(或者是1SE值最小,此法最常用)的回歸樹。
# 加載所需的程序包
library(ade4)
library(vegan)  # 應(yīng)該先加載ade4后加載vegan以避免沖突
library(gclus)
library(cluster)
library(RColorBrewer)
library(labdsv)
library(mvpart)
library(MVPARTwrap) # MVPARTwrap這個(gè)程序包必須從本地zip文件安裝
# 導(dǎo)入CSV格式的數(shù)據(jù)

rm(list = ls())
setwd("D:\\Users\\Administrator\\Desktop\\RStudio\\數(shù)量生態(tài)學(xué)\\DATA")

spe <- read.csv("DoubsSpe.csv", row.names=1)
env <- read.csv("DoubsEnv.csv", row.names=1)
spa <- read.csv("DoubsSpa.csv", row.names=1)
# 刪除無物種數(shù)據(jù)的樣方8
spe <- spe[-8,]
env <- env[-8,]
spa <- spa[-8,]
# 物種多度數(shù)據(jù):先計(jì)算樣方之間的弦距離矩陣,然后進(jìn)行單連接聚合聚類
# **************************************************************
spe.norm <- decostand(spe, "normalize")
spe.ch <- vegdist(spe.norm, "euc")
spe.ch.single <- hclust(spe.ch, method="single")

mvpart程序包從CRAN上下架了,感謝賴江山老師提供的Windows版安裝包。我試了一下在3.4.0上安裝成功了,本文也是基于這個(gè)版本來做的。

library(mvpart) # 載入mvpart程序包
spe.ch.mvpart <- mvpart(data.matrix(spe.norm) ~ ., env, margin=0.08, cp=0, 
    xv="pick", xval=nrow(spe), xvmult=100, which=4)
X-Val rep : 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100
Minimum tree sizes
tabmins
 2  3  4  6  7  8  9 10 11 
 5  9  8  1 21 17 10 23  6 

參數(shù)xv="pick"允許通過人機(jī)交互的方式選擇所需要的分類分組。如果自動(dòng)選擇具有最小CVRE值的回歸樹,可以設(shè)定xv="min"。


下面是嘗試的選擇分為4組回歸樹結(jié)果。


回歸樹特征描寫:

  • 每個(gè)節(jié)點(diǎn)通過一個(gè)解釋變量劃分。例如第一個(gè)節(jié)點(diǎn)被海拔劃分為含有13和16個(gè)樣方的兩組。分割點(diǎn)(海拔340m)在原始數(shù)據(jù)中的比值,它是分割點(diǎn)左右兩個(gè)樣方的平均值。如果其他變量也能產(chǎn)生相同的分組,也可以選擇其他變量進(jìn)行分組。
  • 每片葉子(終端)都顯示所含樣方的數(shù)量和RE,并顯示該組內(nèi)物種多度分布情況的條形圖(物種排列順序按照響應(yīng)變量矩陣內(nèi)的列變量順序排序)
  • 對(duì)于一個(gè)新的觀測(cè)樣方,可以根據(jù)其環(huán)境變量相應(yīng)的值和回歸樹,將新樣方直接分配到某一組。樣方不斷分組的過程中一個(gè)環(huán)境變量也可以多次使用。
> summary(spe.ch.mvpart)
Call:
mvpart(form = data.matrix(spe.norm) ~ ., data = env, xv = "pick", 
    xval = nrow(spe), xvmult = 100, margin = 0.08, which = 4, 
    cp = 0)
  n= 29 

          CP nsplit rel error    xerror       xstd
1 0.44820889      0 1.0000000 1.0758371 0.05827462
2 0.09506051      1 0.5517911 0.7332388 0.11169179
3 0.08626143      2 0.4567306 0.7165753 0.10479606
4 0.04889908      3 0.3704692 0.7021106 0.10280365

Node number 1: 29 observations,    complexity param=0.4482089
  Means=0.05571,0.2515,0.27,0.2729,0.05579,0.06116,0.04772,0.07049,0.1295,0.1958,0.1094,0.06915,0.1578,0.1098,0.09459,0.07749,0.07079,0.05359,0.057,0.1183,0.05701,0.03674,0.09898,0.1923,0.07156,0.1933,0.06187, Summed MSE=0.5256098 
  left son=2 (16 obs) right son=3 (13 obs)
  Primary splits:
      alt < 340    to the right, improve=0.4482089, (0 missing)
      das < 204.75 to the left,  improve=0.4482089, (0 missing)
      deb < 24.65  to the left,  improve=0.4482089, (0 missing)
      amm < 0.06   to the left,  improve=0.3825997, (0 missing)
      oxy < 9.55   to the right, improve=0.3619088, (0 missing)

Node number 2: 16 observations,    complexity param=0.08626143
  Means=0.09453,0.4461,0.441,0.4128,0.09132,0.09554,0.005803,0.04497,0.1255,0.17,0.04618,0.02865,0.07062,0.06948,0.06199,0.005803,0.01124,0.01141,0.01124,0.06578,0,0,0,0.08812,0,0.01161,0.005803, Summed MSE=0.3337866 
  left son=4 (13 obs) right son=5 (3 obs)
  Primary splits:
      amm < 0.11   to the left,  improve=0.2462006, (0 missing)
      dbo < 4.05   to the left,  improve=0.2423770, (0 missing)
      oxy < 10.25  to the right, improve=0.2423770, (0 missing)
      pho < 0.15   to the left,  improve=0.1819782, (0 missing)
      nit < 0.51   to the left,  improve=0.1785430, (0 missing)

Node number 3: 13 observations,    complexity param=0.09506051
  Means=0.007934,0.01205,0.05962,0.1008,0.01205,0.01885,0.09931,0.1019,0.1345,0.2275,0.1871,0.119,0.2651,0.1593,0.1347,0.1657,0.1441,0.1055,0.1133,0.1829,0.1272,0.08196,0.2208,0.3205,0.1596,0.4168,0.1309, Summed MSE=0.2361686 
  left son=6 (3 obs) right son=7 (10 obs)
  Primary splits:
      amm < 0.45   to the right, improve=0.4719501, (0 missing)
      dbo < 10.6   to the right, improve=0.4719501, (0 missing)
      pho < 1.07   to the right, improve=0.3942148, (0 missing)
      oxy < 6.75   to the left,  improve=0.3942148, (0 missing)
      das < 236.15 to the right, improve=0.2239291, (0 missing)

Node number 4: 13 observations
  Means=0.1092,0.5207,0.4824,0.4334,0.1053,0.1033,0,0.02678,0.09794,0.1276,0.03541,0.006695,0.06573,0.05029,0.03392,0,0.006695,0,0.006695,0.04208,0,0,0,0.01639,0,0,0, Summed MSE=0.2366276 

Node number 5: 3 observations
  Means=0.03095,0.1228,0.2613,0.3233,0.03095,0.0619,0.03095,0.1238,0.245,0.3539,0.09285,0.1238,0.09181,0.1527,0.1836,0.03095,0.03095,0.06086,0.03095,0.1685,0,0,0,0.3989,0,0.0619,0.03095, Summed MSE=0.3165241 

Node number 6: 3 observations
  Means=0,0,0,0,0,0,0.05206,0,0.07647,0.3167,0,0,0.205,0.07647,0,0,0.05206,0.07647,0,0,0,0,0.1806,0.3167,0.05206,0.7619,0, Summed MSE=0.1186808 

Node number 7: 10 observations
  Means=0.01031,0.01567,0.07751,0.131,0.01567,0.02451,0.1135,0.1325,0.1519,0.2007,0.2432,0.1547,0.2831,0.1842,0.1751,0.2154,0.1717,0.1142,0.1473,0.2378,0.1653,0.1065,0.2329,0.3217,0.1919,0.3133,0.1701, Summed MSE=0.1265172 

> printcp(spe.ch.mvpart)
mvpart(form = data.matrix(spe.norm) ~ ., data = env, xv = "pick", 
    xval = nrow(spe), xvmult = 100, margin = 0.08, which = 4, 
    cp = 0)

Variables actually used in tree construction:
[1] alt amm

Root node error: 15.243/29 = 0.52561

n= 29 

        CP nsplit rel error  xerror     xstd
1 0.448209      0   1.00000 1.07584 0.058275
2 0.095061      1   0.55179 0.73324 0.111692
3 0.086261      2   0.45673 0.71658 0.104796
4 0.048899      3   0.37047 0.70211 0.102804

# MRT的殘差
par(mfrow=c(1,2))
hist(residuals(spe.ch.mvpart), col="grey")
plot(predict(spe.ch.mvpart), residuals(spe.ch.mvpart)[,2], 
    main="Residuals vs Predicted")
abline(h=0, lty=3, col="grey")
> # 組的組成
> spe.ch.mvpart$where
 [1] 3 3 3 3 4 3 3 4 3 3 3 3 3 3 3 4 7 7 7 7 7 6 6 6 7 7 7 7 7
> spe.ch.mvpart$where
 [1] 3 3 3 3 4 3 3 4 3 3 3 3 3 3 3 4 7 7 7 7 7 6 6 6 7 7 7 7 7
> # 識(shí)別組的名稱
> (groups.mrt <- levels(as.factor(spe.ch.mvpart$where)))
[1] "3" "4" "6" "7"
> # 第一片葉子的魚類物種組成 
> spe.norm[which(spe.ch.mvpart$where==groups.mrt[1]),]
         CHA       TRU       VAI       LOC       OMB       BLA HOT       TOX
1  0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000   0 0.0000000
2  0.0000000 0.7071068 0.5656854 0.4242641 0.0000000 0.0000000   0 0.0000000
3  0.0000000 0.5735393 0.5735393 0.5735393 0.0000000 0.0000000   0 0.0000000
4  0.0000000 0.4558423 0.5698029 0.5698029 0.0000000 0.0000000   0 0.0000000
6  0.0000000 0.3779645 0.5039526 0.6299408 0.0000000 0.0000000   0 0.0000000
7  0.0000000 0.6063391 0.4850713 0.6063391 0.0000000 0.0000000   0 0.0000000
10 0.0000000 0.1543033 0.6172134 0.6172134 0.0000000 0.0000000   0 0.0000000
11 0.1856953 0.5570860 0.7427814 0.1856953 0.1856953 0.0000000   0 0.0000000
12 0.2461830 0.6154575 0.4923660 0.4923660 0.2461830 0.0000000   0 0.0000000
13 0.2373563 0.5933908 0.5933908 0.2373563 0.3560345 0.2373563   0 0.0000000
14 0.2941742 0.4902903 0.4902903 0.3922323 0.3922323 0.2941742   0 0.0000000
15 0.2822163 0.3762883 0.3762883 0.4703604 0.1881442 0.3762883   0 0.0000000
16 0.1740777 0.2611165 0.2611165 0.4351941 0.0000000 0.4351941   0 0.3481553
         VAN        CHE        BAR        SPI        GOU        BRO
1  0.0000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2  0.0000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
3  0.0000000 0.00000000 0.00000000 0.00000000 0.00000000 0.11470787
4  0.0000000 0.11396058 0.00000000 0.00000000 0.11396058 0.22792115
6  0.1259882 0.25197632 0.00000000 0.00000000 0.12598816 0.12598816
7  0.1212678 0.12126781 0.00000000 0.00000000 0.00000000 0.00000000
10 0.3086067 0.30860670 0.00000000 0.00000000 0.15430335 0.00000000
11 0.0000000 0.18569534 0.00000000 0.00000000 0.00000000 0.00000000
12 0.0000000 0.12309149 0.00000000 0.00000000 0.00000000 0.00000000
13 0.0000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
14 0.0000000 0.09805807 0.09805807 0.00000000 0.09805807 0.09805807
15 0.2822163 0.28221626 0.18814417 0.00000000 0.18814417 0.00000000
16 0.4351941 0.17407766 0.17407766 0.08703883 0.17407766 0.08703883
          PER BOU        PSO ROT        CAR        TAN BCO PCH GRE
1  0.00000000   0 0.00000000   0 0.00000000 0.00000000   0   0   0
2  0.00000000   0 0.00000000   0 0.00000000 0.00000000   0   0   0
3  0.00000000   0 0.00000000   0 0.00000000 0.00000000   0   0   0
4  0.22792115   0 0.00000000   0 0.00000000 0.11396058   0   0   0
6  0.12598816   0 0.00000000   0 0.00000000 0.25197632   0   0   0
7  0.00000000   0 0.00000000   0 0.00000000 0.00000000   0   0   0
10 0.00000000   0 0.00000000   0 0.00000000 0.00000000   0   0   0
11 0.00000000   0 0.00000000   0 0.00000000 0.00000000   0   0   0
12 0.00000000   0 0.00000000   0 0.00000000 0.00000000   0   0   0
13 0.00000000   0 0.00000000   0 0.00000000 0.00000000   0   0   0
14 0.00000000   0 0.00000000   0 0.00000000 0.00000000   0   0   0
15 0.00000000   0 0.00000000   0 0.00000000 0.09407209   0   0   0
16 0.08703883   0 0.08703883   0 0.08703883 0.08703883   0   0   0
          GAR BBO ABL ANG
1  0.00000000   0   0   0
2  0.00000000   0   0   0
3  0.00000000   0   0   0
4  0.00000000   0   0   0
6  0.12598816   0   0   0
7  0.00000000   0   0   0
10 0.00000000   0   0   0
11 0.00000000   0   0   0
12 0.00000000   0   0   0
13 0.00000000   0   0   0
14 0.00000000   0   0   0
15 0.00000000   0   0   0
16 0.08703883   0   0   0
> # 第一片葉子的環(huán)境變量組成
> env[which(spe.ch.mvpart$where==groups.mrt[1]),]
     das alt  pen   deb  pH dur  pho  nit  amm  oxy dbo
1    0.3 934 48.0  0.84 7.9  45 0.01 0.20 0.00 12.2 2.7
2    2.2 932  3.0  1.00 8.0  40 0.02 0.20 0.10 10.3 1.9
3   10.2 914  3.7  1.80 8.3  52 0.05 0.22 0.05 10.5 3.5
4   18.5 854  3.2  2.53 8.0  72 0.10 0.21 0.00 11.0 1.3
6   32.4 846  3.2  2.86 7.9  60 0.20 0.15 0.00 10.2 5.3
7   36.8 841  6.6  4.00 8.1  88 0.07 0.15 0.00 11.1 2.2
10  99.0 617  9.9 10.00 7.7  82 0.06 0.75 0.01 10.0 4.3
11 123.4 483  4.1 19.90 8.1  96 0.30 1.60 0.00 11.5 2.7
12 132.4 477  1.6 20.00 7.9  86 0.04 0.50 0.00 12.2 3.0
13 143.6 450  2.1 21.10 8.1  98 0.06 0.52 0.00 12.4 2.4
14 152.2 434  1.2 21.20 8.3  98 0.27 1.23 0.00 12.3 3.8
15 164.5 415  0.5 23.00 8.6  86 0.40 1.00 0.00 11.7 2.1
16 185.9 375  2.0 16.10 8.0  88 0.20 2.00 0.05 10.3 2.7
> # 葉子的魚類物種組成表格和餅圖
> leaf.sum <- matrix(0, length(groups.mrt), ncol(spe))
> colnames(leaf.sum) <- colnames(spe)
> for(i in 1:length(groups.mrt)){
+   leaf.sum[i,] <- apply(spe.norm[which(spe.ch.mvpart$where==groups.mrt[i]),],
+     2, sum)
+ }
> leaf.sum
            CHA       TRU       VAI      LOC        OMB       BLA        HOT
[1,] 1.41970277 6.7687248 6.2714982 5.634304 1.36828926 1.3430130 0.00000000
[2,] 0.09284767 0.3682695 0.7839270 0.969990 0.09284767 0.1856953 0.09284767
[3,] 0.00000000 0.0000000 0.0000000 0.000000 0.00000000 0.0000000 0.15617376
[4,] 0.10314212 0.1566709 0.7750802 1.310359 0.15667090 0.2450592 1.13488718
           TOX       VAN       CHE       BAR        SPI       GOU       BRO
[1,] 0.3481553 1.2732731 1.6589502 0.4602799 0.08703883 0.8545320 0.6537141
[2,] 0.3713907 0.7349785 1.0616448 0.2785430 0.37139068 0.2754219 0.4579960
[3,] 0.0000000 0.2294157 0.9500115 0.0000000 0.00000000 0.6150052 0.2294157
[4,] 1.3247927 1.5186125 2.0069433 2.4324424 1.54705268 2.8307202 1.8419593
           PER        BOU        PSO       ROT        CAR       TAN     BCO
[1,] 0.4409481 0.00000000 0.08703883 0.0000000 0.08703883 0.5470478 0.00000
[2,] 0.5508437 0.09284767 0.09284767 0.1825742 0.09284767 0.5053840 0.00000
[3,] 0.0000000 0.00000000 0.15617376 0.2294157 0.00000000 0.0000000 0.00000
[4,] 1.7514544 2.15448060 1.71685385 1.1420904 1.47306052 2.3783208 1.65332
          PCH       GRE       GAR       BBO       ABL        ANG
[1,] 0.000000 0.0000000 0.2130270 0.0000000 0.0000000 0.00000000
[2,] 0.000000 0.0000000 1.1968310 0.0000000 0.1856953 0.09284767
[3,] 0.000000 0.5417633 0.9500115 0.1561738 2.2856126 0.00000000
[4,] 1.065468 2.3285769 3.2165264 1.9190327 3.1330002 1.70137667
> par(mfrow=c(2,2))
> for(i in 1:length(groups.mrt)){
+ pie(which(leaf.sum[i,]>0), radius=1, main=c("leaf #", groups.mrt[i]))
+ }

> # 從mvpart()函數(shù)獲得的結(jié)果對(duì)象中提取MRT結(jié)果
> # 必須加載MVPARTwrap和rdaTest程序包
> spe.ch.mvpart.wrap <- MRT(spe.ch.mvpart, percent=10, species=colnames(spe))
> summary(spe.ch.mvpart.wrap)
Portion (%) of deviance explained by species for every particular node 
 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                    --- Node 1 ---
 Complexity(R2) 44.82089 
 alt>=340 alt< 340 

~ Discriminant species : 
                            TRU         VAI        LOC         ABL
% of expl. deviance 19.77533931 15.26700612 10.2177021 17.23790891
Mean on the left     0.44606214  0.44096408  0.4127684  0.01160596
Mean on the right    0.01205161  0.05962155  0.1007969  0.41681637

~ INDVAL species for this node: : left is 1, right is 2
    cluster indicator_value probability
TRU       1          0.9128       0.001
VAI       1          0.8258       0.001
LOC       1          0.7535       0.001
CHA       1          0.4036       0.022
ABL       2          0.9729       0.001
GRE       2          0.9231       0.001
HOT       2          0.7994       0.001
PSO       2          0.7849       0.001
GAR       2          0.7844       0.001
BBO       2          0.7692       0.001
BOU       2          0.7432       0.001
ANG       2          0.7366       0.001
GOU       2          0.7289       0.002
CAR       2          0.6998       0.001
ROT       2          0.6942       0.002
BCO       2          0.6923       0.001
SPI       2          0.6200       0.002
BAR       2          0.6170       0.002
BRO       2          0.5892       0.021
TAN       2          0.5658       0.018
PCH       2          0.5385       0.002
PER       2          0.5268       0.023
TOX       2          0.4803       0.014

Sum of probabilities                 =  0.786 

Sum of Indicator Values              =  17.76 

Sum of Significant Indicator Values  =  16.16 

Number of Significant Indicators     =  23 

Significant Indicator Distribution

 1  2 
 4 19 


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                    --- Node 2 ---
 Complexity(R2) 8.626143 
 amm< 0.11 amm>=0.11 

~ Discriminant species : 
                           TRU         GAR
% of expl. deviance 29.3525828 27.13056017
Mean on the left     0.5206711  0.01638669
Mean on the right    0.1227565  0.39894367
eliminating null columns

~ INDVAL species for this node: : left is 1, right is 2
    cluster indicator_value probability
TRU       1          0.8092       0.005
GAR       2          0.9605       0.001
TAN       2          0.8001       0.014

Sum of probabilities                 =  6.17 

Sum of Indicator Values              =  10.26 

Sum of Significant Indicator Values  =  2.57 

Number of Significant Indicators     =  3 

Significant Indicator Distribution

1 2 
1 2 


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                    --- Node 3 ---
 Complexity(R2) 9.506051 
 amm>=0.45 amm< 0.45 

~ Discriminant species : 
                           ABL
% of expl. deviance 32.0463373
Mean on the left     0.7618709
Mean on the right    0.3133000

~ INDVAL species for this node: : left is 1, right is 2
    cluster indicator_value probability
ABL       1          0.7086       0.007
BAR       2          1.0000       0.004
SPI       2          1.0000       0.002
PER       2          1.0000       0.004
BOU       2          1.0000       0.002
CAR       2          1.0000       0.005
TAN       2          1.0000       0.004
ANG       2          1.0000       0.004
LOC       2          0.9000       0.019
TOX       2          0.9000       0.016
BCO       2          0.9000       0.015
PSO       2          0.7673       0.030
BBO       2          0.7080       0.037
BRO       2          0.7066       0.032
HOT       2          0.6855       0.032
VAN       2          0.6651       0.035

Sum of probabilities                 =  6.279 

Sum of Indicator Values              =  18.74 

Sum of Significant Indicator Values  =  13.94 

Number of Significant Indicators     =  16 

Significant Indicator Distribution

 1  2 
 1 15 


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
               --- Final partition  ---
 
Sites in the leaf # 3 
 [1] "1"  "2"  "3"  "4"  "6"  "7"  "10" "11" "12" "13" "14" "15" "16"

 
Sites in the leaf # 4 
[1] "5"  "9"  "17"

 
Sites in the leaf # 6 
[1] "23" "24" "25"

 
Sites in the leaf # 7 
 [1] "18" "19" "20" "21" "22" "26" "27" "28" "29" "30"

 
~ INDVAL species of the final partition: 
    cluster indicator_value probability
TRU       1          0.7900       0.001
VAI       1          0.5422       0.001
LOC       1          0.4506       0.035
ABL       3          0.6700       0.001
BCO       4          0.9000       0.001
BOU       4          0.8744       0.001
ANG       4          0.8461       0.001
CAR       4          0.7965       0.001
BBO       4          0.7080       0.001
PCH       4          0.7000       0.009
PSO       4          0.6568       0.001
BAR       4          0.6548       0.001
HOT       4          0.5776       0.020
GRE       4          0.5632       0.027
SPI       4          0.5424       0.030
TAN       4          0.5304       0.006
GOU       4          0.4385       0.042

Sum of probabilities                 =  2.848 

Sum of Indicator Values              =  14.7 

Sum of Significant Indicator Values  =  11.24 

Number of Significant Indicators     =  17 

Significant Indicator Distribution

 1  3  4 
 3  1 13 

~ Corresponding MRT leaf number for Indval cluster number: 
MRT leaf # 3 is Indval cluster no. 1 
MRT leaf # 4 is Indval cluster no. 2 
MRT leaf # 6 is Indval cluster no. 3 
MRT leaf # 7 is Indval cluster no. 4 

# MRT作為空間和時(shí)間系列約束聚類方法 
spe.ch.seq <- mvpart(as.matrix(spe) ~ das, env, cp=0, xv="pick", margin=0.08,
  xval=nrow(spe), xvmult=100, which=4)
summary(spe.ch.seq)
# 組的組成(終端節(jié)點(diǎn)的標(biāo)識(shí))
(gr <- spe.ch.seq$where)
# 重新編排聚類簇的編號(hào)
aa <- 1
gr2 <- rep(1,length(gr))
for (i in 2:length(gr)) {
  if (gr[i]!=gr[i-1]) aa <- aa+1
  gr2[i] <- aa
}
# 在Doubs河地圖上標(biāo)注樣方所屬的聚類簇
plot(spa, asp=1, type="n", main="MRT 分類組", 
    xlab="x坐標(biāo) (km)", ylab="y坐標(biāo) (km)")
lines(spa, col="light blue")
text(70, 10, "上游", cex=1.2, col="red")
text(15, 115, "下游", cex=1.2, col="red")
k <- length(levels(factor(gr2)))
for (i in 1:k) {
   points(spa[gr2==i,1], spa[gr2==i,2], pch=i+20, cex=3, col=i+1, bg=i+1)
   }
text(spa, row.names(spa), cex=0.8, col="white", font=2)
legend("bottomright", paste("組",1:k), pch=(1:k)+20, col=2:(k+1), 
  pt.bg=2:(k+1), pt.cex=2, bty="n")

科學(xué)網(wǎng)|陳亮|多元回歸樹分析
什么是多元回歸樹?
mvpart
MVPARTwrap

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,363評(píng)論 6 532
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,497評(píng)論 3 416
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,305評(píng)論 0 374
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)。 經(jīng)常有香客問我,道長(zhǎng),這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,962評(píng)論 1 311
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 71,727評(píng)論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,193評(píng)論 1 324
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,257評(píng)論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,411評(píng)論 0 288
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,945評(píng)論 1 335
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 40,777評(píng)論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 42,978評(píng)論 1 369
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,519評(píng)論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,216評(píng)論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,642評(píng)論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,878評(píng)論 1 286
  • 我被黑心中介騙來泰國(guó)打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 51,657評(píng)論 3 391
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 47,960評(píng)論 2 373

推薦閱讀更多精彩內(nèi)容