1. Bloom filter
適用范圍:可以用來實現數據字典,進行數據的判重,或者集合求交集。
位數組+k個獨立hash函數。將hash函數對應的值的位數組置1,查找時如果發現所有hash函數對應位都是1說明存在,很明顯這個過程并不保證查找的結果是100%正確的。
給你A,B兩個文件,各存放50億條URL,每條URL占用64字節,內存限制是4G,讓你找出A,B文件共同的URL。
若不允許有錯誤率,則先hash,分到1000個小文件中,再得到hash值,對比每個小文件,若有相同hash值則說明有相同文件。不對應的小文件中不可能有相同文件。
2. hashing
快速查找,刪除的基本數據結構,通常需要總數據量可以放入內存。
海量日志數據,提取出某日訪問百度次數最多的那個IP。
解決方案:mod1000,得到1000個文件,提取出1000個局部最大值,最后得到全局最大值。
又如:有一個1G大小的一個文件,里面每一行是一個詞,詞的大小不超過16字節,內存限制大小是1M。返回頻數最高的100個詞。
又如:有10個文件,每個文件1G,每個文件的每一行存放的都是用戶的query,每個文件的query都可能重復。要求你按照query的頻度排序。
解決方案:先mod,后內部排序,最后歸并排序。
3. bit-map
可進行數據的快速查找,判重,刪除,一般來說數據范圍是int的10倍以下。
2.5億個整數中找出不重復的整數的個數,內存空間不足以容納這2.5億個整數。
又如:給40億個不重復的unsigned int的整數,沒排過序的,然后再給一個數,如何快速判斷這個數是否在那40億個數當中?
也可用《編程珠璣》里的方法,用二進制表示,根據最高位為0 1 進行二分查找。
4. 堆
海量數據前n大,并且n比較小,堆可以放入內存 。
100w個數中找最大的前100個數。
5. trie樹
數據量大,重復多,但是數據種類小可以放入內存。
請你統計最熱門的10個查詢串,要求使用的內存不能超過1G,每個查詢串的長度為1-255字節。
解決方案:用trie樹存儲,關鍵字區域存儲出現次數,最后用堆動態記錄出現次數最多的10個查詢串。
6. mapreduce
適用范圍:數據量大,但是數據種類小可以放入內存。
基本原理及要點:將數據交給不同的機器去處理,數據劃分,結果歸約。
海量數據分布在100臺電腦中,想個辦法高效統計出這批數據的TOP10。
首先可以根據數據值或者把數據hash后的值,將數據按照范圍劃分到不同的機子,最好可以讓數據劃分后可以一次讀入內存,這樣不同的機子負責處理各種的數值范圍,實際上就是map。得到結果后,各個機子只需拿出各自的出現次數最多的前N個數據,然后匯總,選出所有的數據中出現次數最多的前N個數據,這實際上就是reduce過程。
經典問題分析
上千萬or億數據(有重復),統計其中出現次數最多的前N個數據,分兩種情況:可一次讀入內存,不可一次讀入。
可用思路:trie樹+堆,數據庫索引,劃分子集分別統計,hash,分布式計算,近似統計,外排序
所謂的是否能一次讀入內存,實際上應該指去除重復后的數據量。如果去重后數據可以放入內存,我們可以為數據建立字典,比如通過 map,hashmap,trie,然后直接進行統計即可。當然在更新每條數據的出現次數的時候,我們可以利用一個堆來維護出現次數最多的前N個數據,當然這樣導致維護次數增加,不如完全統計后在求前N大效率高。
如果數據無法放入內存。一方面我們可以考慮上面的字典方法能否被改進以適應這種情形,可以做的改變就是將字典存放到硬盤上,而不是內存,這可以參考數據庫的存儲方法。
當然還有更好的方法,就是可以采用分布式計算,基本上就是map-reduce過程,首先可以根據數據值或者把數據hash(md5)后的值,將數據按照范圍劃分到不同的機子,最好可以讓數據劃分后可以一次讀入內存,這樣不同的機子負責處理各種的數值范圍,實際上就是map。得到結果后,各個機子只需拿出各自的出現次數最多的前N個數據,然后匯總,選出所有的數據中出現次數最多的前N個數據,這實際上就是reduce過程。
實際上可能想直接將數據均分到不同的機子上進行處理,這樣是無法得到正確的解的。因為一個數據可能被均分到不同的機子上,而另一個則可能完全聚集到一個機子上,同時還可能存在具有相同數目的數據。比如我們要找出現次數最多的前100個,我們將1000萬的數據分布到10臺機器上,找到每臺出現次數最多的前 100個,歸并之后這樣不能保證找到真正的第100個,因為比如出現次數最多的第100個可能有1萬個,但是它被分到了10臺機子,這樣在每臺上只有1千個,假設這些機子排名在1000個之前的那些都是單獨分布在一臺機子上的,比如有1001個,這樣本來具有1萬個的這個就會被淘汰,即使我們讓每臺機子選出出現次數最多的1000個再歸并,仍然會出錯,因為可能存在大量個數為1001個的發生聚集。因此不能將數據隨便均分到不同機子上,而是要根據hash 后的值將它們映射到不同的機子上處理,讓不同的機器處理一個數值范圍。
而外排序的方法會消耗大量的IO,效率不會很高。而上面的分布式方法,也可以用于單機版本,也就是將總的數據根據值的范圍,劃分成多個不同的子文件,然后逐個處理。處理完畢之后再對這些單詞的及其出現頻率進行一個歸并。實際上就可以利用一個外排序的歸并過程。
另外還可以考慮近似計算,也就是我們可以通過結合自然語言屬性,只將那些真正實際中出現最多的那些詞作為一個字典,使得這個規模可以放入內存。