網絡生物學與人工智能 | Awesome-GNN

2020/7/9,第一次更新,本文將總結筆者的研究方向一"多組學智能醫療"的子方向"網絡生物學與人工智能"的分支——圖神經網絡(Graph Neural Networks, GNNs)方向學習過程中發現的優質資源,包括國自然、paper和應用方向、codes、開源框架、國際會議、期刊等。其中的部分文章將會新開辟文章分析。

一、目錄

1 論文

1.1 綜述

  • Zhang Z, Cui P, Zhu W. Deep learning on graphs: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2020.
  • Bronstein M M, Bruna J, LeCun Y, et al. Geometric deep learning: going beyond euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18-42.
  • Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020.
  • Hamilton W L, Ying R, Leskovec J. Representation learning on graphs: Methods and applications[J]. arXiv preprint arXiv:1709.05584, 2017.

1.2 圖神經網絡架構

  • GGNN: Gated Graph Neural Networks (Li et al., 2015).
  • RGCN: Relational Graph Convolutional Networks (Schlichtkrull et al., 2017).
  • RGAT: Relational Graph Attention Networks (Veli?kovi? et al., 2018).
  • RGIN: Relational Graph Isomorphism Networks (Xu et al., 2019).
  • GNN-Edge-MLP: Graph Neural Network with Edge MLPs - a variant of RGCN in which messages on edges are computed using full MLPs, not just a single layer applied to the source state.
  • RGDCN: Relational Graph Dynamic Convolution Networks - a new variant of RGCN in which the weights of convolutional layers are dynamically computed.
  • GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation - a new extension of RGCN with FiLM layers.

1.3 GNN表征學習

  • Hu W, Liu B, Gomes J, et al. Strategies for Pre-training Graph Neural Networks[C]. ICLR. 2020.

1.4 應用

1.4.1 視覺與自然語言(VQA)
  • Narasimhan M, Lazebnik S, Schwing A. Out of the box: Reasoning with graph convolution nets for factual visual question answering[C]//NeurIPS. 2018: 2654-2665.
  • Norcliffe-Brown W, Vafeias S, Parisot S. Learning conditioned graph structures for interpretable visual question answering[C]//NeurIPS. 2018: 8334-8343.
  • Zhou Y, Ji R, Sun X, et al. Plenty Is Plague: Fine-Grained Learning for Visual Question Answering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.
1.4.2 醫療健康和生物化學(高通量組學)
  • Shang J, Xiao C, Ma T, et al. Gamenet: Graph augmented memory networks for recommending medication combination[C]//AAAI. 2019, 33: 1126-1133.
  • Yu E Y, Wang Y P, Fu Y, et al. Identifying critical nodes in complex networks via graph convolutional networks[J]. Knowledge-Based Systems, 2020: 105893.
  • Zitnik M, Leskovec J. Predicting multicellular function through multi-layer tissue networks[J]. Bioinformatics, 2017, 33(14): i190-i198.
  • Chereda H, Bleckmann A, Kramer F, et al. Utilizing Molecular Network Information via Graph Convolutional Neural Networks to Predict Metastatic Event in Breast Cancer[C]//GMDS. 2019: 181-186.
  • Wang C, Guo J, Zhao N, et al. A Cancer Survival Prediction Method Based on Graph Convolutional Network[J]. IEEE Transactions on NanoBioscience, 2019, 19(1): 117-126.
  • Zhang J, Hu X, Jiang Z, et al. Predicting Disease-related RNA Associations based on Graph Convolutional Attention Network[C]//BIBM. IEEE, 2019: 177-182.
  • Pan X, Shen H B. Inferring disease-associated microRNAs using semi-supervised multi-label graph convolutional networks[J]. Iscience, 2019, 20: 265-277.
  • Wang M, Wang H, Zheng H, et al. A knowledge-driven network-based analytical framework for the identification of rumen metabolites[J]. IEEE Transactions on NanoBioscience, 2020.
  • Liu H, Guan J, Li H, et al. Predicting the Disease Genes of Multiple Sclerosis Based on Network Representation Learning[J]. Frontiers in Genetics, 2020, 11.
  • Dai H, Li L, Zeng T, et al. Cell-specific network constructed by single-cell RNA sequencing data[J]. Nucleic acids research, 2019, 47(11): e62-e62.
  • Liu X, Chang X, Leng S, et al. Detection for disease tipping points by landscape dynamic network biomarkers[J]. National Science Review, 2019, 6(4): 775-785.
  • Yu X, Zeng T, Wang X, et al. Unravelling personalized dysfunctional gene network of complex diseases based on differential network model[J]. Journal of translational medicine, 2015, 13(1): 189.
  • Moon K R, Stanley III J S, Burkhardt D, et al. Manifold learning-based methods for analyzing single-cell RNA-sequencing data[J]. Current Opinion in Systems Biology, 2018, 7: 36-46.
  • Rhee S, Seo S, Kim S. Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification[J]. arXiv preprint arXiv:1711.05859, 2017.

2 開源框架

?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,923評論 6 535
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,740評論 3 420
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,856評論 0 380
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,175評論 1 315
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,931評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,321評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,383評論 3 443
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,533評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,082評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,891評論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,067評論 1 371
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,618評論 5 362
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,319評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,732評論 0 27
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,987評論 1 289
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,794評論 3 394
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,076評論 2 375