01背包問題 dynamic programming

P01: 01背包問題 ZeroOnePack

題目

有N件物品和一個容量為V的背包。第i件物品的費用是c[i],價值是w[i]。求解將哪些物品裝入背包可使價值總和最大。

基本思路

這是最基礎(chǔ)的背包問題,特點是:每種物品僅有一件,可以選擇放或不放。
用子問題定義狀態(tài):即f[i][v]表示前i件物品恰放入一個容量為v的背包可以獲得的最大價值。則其狀態(tài)轉(zhuǎn)移方程便是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

這個方程非常重要,基本上所有跟背包相關(guān)的問題的方程都是由它衍生出來的。所以有必要將它詳細解釋一下:“將前i件物品放入容量為v的背包中”這個子問題,若只考慮第i件物品的策略(放或不放),那么就可以轉(zhuǎn)化為一個只牽扯前i-1件物品的問題。如果不放第i件物品,那么問題就轉(zhuǎn)化為“前i-1件物品放入容量為v的背包中”,價值為f[i-1][v];如果放第i件物品,那么問題就轉(zhuǎn)化為“前i-1件物品放入剩下的容量為v-c[i]的背包中”,此時能獲得的最大價值就是f[i-1][v-c[i]]再加上通過放入第i件物品獲得的價值w[i]。

優(yōu)化空間復雜度

以上方法的時間和空間復雜度均為O(VN),其中時間復雜度應(yīng)該已經(jīng)不能再優(yōu)化了,但空間復雜度卻可以優(yōu)化到O。
先考慮上面講的基本思路如何實現(xiàn),肯定是有一個主循環(huán)i=1..N,每次算出來二維數(shù)組f[i][0..V]的所有值。那么,如果只用一個數(shù)組f[0..V],能不能保證第i次循環(huán)結(jié)束后f[v]中表示的就是我們定義的狀態(tài)f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]兩個子問題遞推而來,能否保證在推f[i][v]時(也即在第i次主循環(huán)中推f[v]時)能夠得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事實上,這要求在每次主循環(huán)中我們以v=V..0的順序推f[v],這樣才能保證推f[v]時f[v-c[i]]保存的是狀態(tài)f[i-1][v-c[i]]的值。偽代碼如下:

for i=1..N 
  for v=V..0 
    f[v]=max{f[v],f[v-c[i]]+w[i]};

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相當于我們的轉(zhuǎn)移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]}
,因為現(xiàn)在的f[v-c[i]]就相當于原來的f[i-1][v-c[i]]。如果將v的循環(huán)順序從上面的逆序改成順序的話,那么則成了f[i][v]由f[i][v-c[i]]推知,與本題意不符,但它卻是另一個重要的背包問題P02最簡捷的解決方案,故學習只用一維數(shù)組解01背包問題是十分必要的。
事實上,使用一維數(shù)組解01背包的程序在后面會被多次用到,所以這里抽象出一個處理一件01背包中的物品過程,以后的代碼中直接調(diào)用不加說明。
過程ZeroOnePack,表示處理一件01背包中的物品,兩個參數(shù)cost、weight分別表明這件物品的費用和價值。

procedure ZeroOnePack(cost,weight) 
  for v=V..cost 
    f[v]=max{f[v],f[v-cost]+weight}

注意這個過程里的處理與前面給出的偽代碼有所不同。前面的示例程序?qū)懗蓈=V..0是為了在程序中體現(xiàn)每個狀態(tài)都按照方程求解了,避免不必要的思維復雜度。而這里既然已經(jīng)抽象成看作黑箱的過程了,就可以加入優(yōu)化。費用為cost的物品不會影響狀態(tài)f[0..cost-1],這是顯然的。
有了這個過程以后,01背包問題的偽代碼就可以這樣寫:

for i=1..N 
  ZeroOnePack(c[i],w[i]);

初始化的細節(jié)問題

我們看到的求最優(yōu)解的背包問題題目中,事實上有兩種不太相同的問法。有的題目要求“恰好裝滿背包”時的最優(yōu)解,有的題目則并沒有要求必須把背包裝滿。一種區(qū)別這兩種問法的實現(xiàn)方法是在初始化的時候有所不同。
如果是第一種問法,要求恰好裝滿背包,那么在初始化時除了f[0]為0其它f[1..V]均設(shè)為-∞,這樣就可以保證最終得到的f[N]是一種恰好裝滿背包的最優(yōu)解。
如果并沒有要求必須把背包裝滿,而是只希望價格盡量大,初始化時應(yīng)該將f[0..V]全部設(shè)為0。
為什么呢?可以這樣理解:初始化的f數(shù)組事實上就是在沒有任何物品可以放入背包時的合法狀態(tài)。如果要求背包恰好裝滿,那么此時只有容量為0的背包可能被價值為0的nothing“恰好裝滿”,其它容量的背包均沒有合法的解,屬于未定義的狀態(tài),它們的值就都應(yīng)該是-∞了。如果背包并非必須被裝滿,那么任何容量的背包都有一個合法解“什么都不裝”,這個解的價值為0,所以初始時狀態(tài)的值也就全部為0了。
這個小技巧完全可以推廣到其它類型的背包問題,后面也就不再對進行狀態(tài)轉(zhuǎn)移之前的初始化進行講解。

一個常數(shù)優(yōu)化

前面的偽代碼中有 for v=V..1,可以將這個循環(huán)的下限進行改進。
由于只需要最后f[v]的值,倒推前一個物品,其實只要知道f[v-w[n]]即可。以此類推,對以第j個背包,其實只需要知道到f[v-sum{w[j..n]}]即可,即代碼中的

for i=1..N 
  for v=V..0

可以改成

for i=1..n 
  bound=max{V-sum{w[i..n]},c[i]}
  for v=V..bound

這對于V比較大時是有用的。

小結(jié)

01背包問題是最基本的背包問題,它包含了背包問題中設(shè)計狀態(tài)、方程的最基本思想,另外,別的類型的背包問題往往也可以轉(zhuǎn)換成01背包問題求解。故一定要仔細體會上面基本思路的得出方法,狀態(tài)轉(zhuǎn)移方程的意義,以及最后怎樣優(yōu)化的空間復雜度。

原帖:origin: http://love-oriented.com/pack/P01.html

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。

推薦閱讀更多精彩內(nèi)容