高中數學函數必考性質,還沒掌握的建議收藏!!

函數是高考數學的基礎,又是重難點,今天老師把函數的八大問題都列出來了。快點收藏和分享吧~


一次函數

一、定義與定義式

自變量x和因變量y有如下關系:y=kx+b?則此時稱y是x的一次函數。

特別地,當b=0時,y是x的正比例函數。即:y=kx (k為常數,k≠0)

二、一次函數的性質

1.y的變化值與對應的x的變化值成正比例,比值為k

即:y=kx+b (k為任意不為零的實數 b取任何實數)

2.當x=0時,b為函數在y軸上的截距。

三、一次函數的圖像及性質

1.作法與圖形:通過如下3個步驟

(1)列表;

(2)描點;

(3)連線,可以作出一次函數的圖像——一條直線。

因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)

2.性質:

(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。

(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。

3.k,b與函數圖像所在象限:

當k>0時,直線必通過一、三象限,y隨x的增大而增大;

當k<0時,直線必通過二、四象限,y隨x的增大而減小。

當b>0時,直線必通過一、二象限;

當b=0時,直線通過原點

當b<0時,直線必通過三、四象限。

特別地,當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖像。

這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

四、確定一次函數的表達式

已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

(1)設一次函數的表達式(也叫解析式)為y=kx+b。

(2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b 和y2=kx2+b

(3)解這個二元一次方程,得到k,b的值。

(4)最后得到一次函數的表達式。

五、一次函數在生活中的應用

1.當時間t一定,距離s是速度v的一次函數。s=vt。

2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。

六、常用公式:(不全面,可以在書上找)

1.求函數圖像的k值:(y1-y2)/(x1-x2)

2.求與x軸平行線段的中點:|x1-x2|/2

3.求與y軸平行線段的中點:|y1-y2|/2

4.求任意線段的長:√(x1-x2)2+(y1-y2)2?(注:根號下(x1-x2)與(y1-y2)的平方和)

二次函數

一、定義與定義表達式

一般地,自變量x和因變量y之間存在如下關系:

y=ax2+bx+c

(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,|a|還可以決定開口大小,|a|越大開口就越小,|a|越小開口就越大。)

則稱y為x的二次函數。

二次函數表達式的右邊通常為二次三項式。

二、二次函數的三種表達式

一般式:y=ax2+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x-h)2+k [拋物線的頂點P(h,k)]

注:在互相轉化中,有如下關系:

h=-b/2ak=(4ac-b2)/4a ? ? ? ?x1,x2=(-b±√b2-4ac)/2a

三、二次函數的圖像

在平面直角坐標系中作出二次函數y=x2的圖像,可以看出,二次函數的圖像是一條拋物線。

四、拋物線的性質

1.拋物線是軸對稱圖形。對稱軸為直線

x= -b/2a。

對稱軸與拋物線唯一的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點P,坐標為

P( -b/2a ,(4ac-b2)/4a )

當-b/2a=0時,P在y軸上;當Δ= b2-4ac=0時,P在x軸上。

3.二次項系數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項系數b和二次項系數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交于(0,c)

6.拋物線與x軸交點個數

Δ= b^2-4ac>0時,拋物線與x軸有2個交點。

Δ= b^2-4ac=0時,拋物線與x軸有1個交點。

Δ= b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x= -b±√b^2-4ac 的值的相反數,乘上虛數i,整個式子除以2a)

五、二次函數與一元二次方程

特別地,二次函數(以下稱函數)y=ax2+bx+c,

當y=0時,二次函數為關于x的一元二次方程(以下稱方程),

即ax2+bx+c=0

此時,函數圖像與x軸有無交點即方程有無實數根。

函數與x軸交點的橫坐標即為方程的根。

1.二次函數y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下:

解析式 和 頂點坐標對 和 對稱軸

y=ax2 ??(0,0) ? x=0

y=a(x-h)2 ??(h,0) ? x=h

y=a(x-h)2+k ? (h,k) ? x=h

y=ax2+bx+c ? (-b/2a,[4ac-b2]/4a) ? x=-b/2a

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h<0時,則向左平行移動|h|個單位得到。

當h>0,k>0時,將拋物線y=ax2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)2+k的圖象;

當h>0,k<0時,將拋物線y=ax2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)2+k的圖象;

當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)2+k的圖象;

當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)2+k的圖象;

因此,研究拋物線 y=ax2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。

2.拋物線y=ax2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b2]/4a).

3.拋物線y=ax2+bx+c(a≠0),若a>0,當x ≤ -b/2a時,y隨x的增大而減小;當x ≥ -b/2a時,y隨x的增大而增大.若a<0,當x ≤ -b/2a時,y隨x的增大而增大;當x ≥ -b/2a時,y隨x的增大而減小.

4.拋物線y=ax2+bx+c的圖象與坐標軸的交點:

(1)圖象與y軸一定相交,交點坐標為(0,c);

(2)當△=b2-4ac>0,圖象與x軸交于兩點A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0

(a≠0)的兩根.這兩點間的距離AB=|x2-x1|

當△=0.圖象與x軸只有一個交點;

當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.

5.拋物線y=ax2+bx+c的最值:如果a>0(a<0),則當x= -b/2a時,y最小(大)值=(4ac-b2)/4a.

頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

6.用待定系數法求二次函數的解析式

(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

y=ax2+bx+c(a≠0).

(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)2+k(a≠0).

(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x1)(x-x2)(a≠0).

7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出。

反比例函數

形如 y=k/x(k為常數且k≠0) 的函數,叫做反比例函數。

自變量x的取值范圍是不等于0的一切實數。

反比例函數圖像性質:反比例函數的圖像為雙曲線。

由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關于原點對稱。

另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為|k|。

知識點:

1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2.對于雙曲線y=k/x ,若在分母上加減任意一個實數 (即 y=k/(x±m)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

對數函數

對數函數的一般形式為,它實際上就是指數函數 的反函數。因此指數函數里對于a的規定,同樣適用于對數函數。

對數函數的圖形只不過的指數函數的圖形的關于直線y=x的對稱圖形,因為它們互為反函數。

(1)對數函數的定義域為大于0的實數集合。

(2)對數函數的值域為全部實數集合。

(3)函數總是通過(1,0)這點。

(4)a大于1時,為單調遞增函數,并且上凸;a小于1大于0時,函數為單調遞減函數,并且下凹。

(5)顯然對數函數無界。

指數函數

指數函數的一般形式為,從上面我們對于冪函數的討論就可以知道,要想使得x能夠取整個實數集合為定義域,則只有使得

可以得到:

(1) 指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。

(2) 指數函數的值域為大于0的實數集合。

(3) 函數圖形都是下凹的。

(4) a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。

(5) 可以看到一個顯然的規律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6) 函數總是在某一個方向上無限趨向于X軸,永不相交。

(7) 函數總是通過(0,1)這點。

(8) 顯然指數函數無界。

奇偶性

一、定義

一般地,對于函數f(x)

(1)如果對于函數定義域內的任意一個x,都有f(-x)=-f(x),那么函數f(x)就叫做奇函數。

(2)如果對于函數定義域內的任意一個x,都有f(-x)=f(x),那么函數f(x)就叫做偶函數。

(3)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。

(4)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。

說明:①奇、偶性是函數的整體性質,對整個定義域而言

②奇、偶函數的定義域一定關于原點對稱,如果一個函數的定義域不關于原點對稱,則這個函數一定不是奇(或偶)函數。

(分析:判斷函數的奇偶性,首先是檢驗其定義域是否關于原點對稱,然后再嚴格按照奇、偶性的定義經過化簡、整理、再與f(x)比較得出結論)

③判斷或證明函數是否具有奇偶性的根據是定義

二、奇偶函數圖像的特征

定理 奇函數的圖像關于原點成中心對稱圖表,偶函數的圖象關于y軸或軸對稱圖形。

f(x)為奇函數《==》f(x)的圖像關于原點對稱

點(x,y)→(-x,-y)

奇函數在某一區間上單調遞增,則在它的對稱區間上也是單調遞增。

偶函數 在某一區間上單調遞增,則在它的對稱區間上單調遞減。

三、奇偶函數運算

1.兩個偶函數相加所得的和為偶函數.

2.兩個奇函數相加所得的和為奇函數.

3.一個偶函數與一個奇函數相加所得的和為非奇函數與非偶函數.

4. 兩個偶函數相乘所得的積為偶函數.?

5.兩個奇函數相乘所得的積為偶函數.

6.一個偶函數與一個奇函數相乘所得的積為奇函數.

定義域

(高中函數定義)設A,B是兩個非空的數集,如果按某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A--B為集合A到集合B的一個函數,記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數的定義域;

值域

一、名稱定義

函數中,應變量的取值范圍叫做這個函數的值域函數的值域,在數學中是函數在定義域中應變量所有值的集合。

常用的求值域的方法

(1)化歸法

(2)圖象法(數形結合)

(3)函數單調性法

(4)配方法

(5)換元法

(6)反函數法(逆求法)

(7)判別式法

(8)復合函數法

(9)三角代換法

(10)基本不等式法等

二、關于函數值域誤區

定義域、對應法則、值域是函數構造的三個基本“元件”。平時數學中,實行“定義域優先”的原則,無可置疑。

然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學生對函數的掌握時好時壞,事實上,定義域與值域二者的位置是相當的,絕不能厚此薄皮,何況它們二者隨時處于互相轉化之中(典型的例子是互為反函數定義域與值域的相互轉化)。

如果函數的值域是無限集的話,那么求函數值域不總是容易的,反靠不等式的運算性質有時并不能奏效,還必須聯系函數的奇偶性、單調性、有界性、周期性來考慮函數的取值情況。

才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內函的理解,從而深化對函數本質的認識。

三、“范圍”與“值域”相同嗎?

“范圍”與“值域”是我們在學習中經常遇到的兩個概念,許多同學常常將它們混為一談,實際上這是兩個不同的概念。

“值域”是所有函數值的集合(即集合中每一個元素都是這個函數的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。

也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。


?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,563評論 6 544
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,694評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,672評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,965評論 1 318
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,690評論 6 413
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 56,019評論 1 329
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 44,013評論 3 449
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,188評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,718評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,438評論 3 360
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,667評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,149評論 5 365
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,845評論 3 351
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,252評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,590評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,384評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,635評論 2 380

推薦閱讀更多精彩內容

  • 風來了, 不過天氣晴朗, 淡淡的有點冷澀, 風, 你好, 以前,舊時, 不訴, 風來了, 臉好燙, 停電了, 光笑...
    三改閱讀 185評論 0 5
  • 東東廠 互聯網營銷實踐者 嘟嘟出行(巴士+共享汽車)媒體營銷,關注廣告營銷 也在集中輸出廣告營銷,媒體圈領域的知識...
    b9173cba9a70閱讀 501評論 0 0
  • 什么時候開始,結婚變得不再有幸福感? 與相愛之人攜手走進婚姻的殿堂,偌大的婚紗裙擺隨意散開在紅毯的玫瑰花瓣中。 多...
    神奇小逗閱讀 633評論 0 4
  • 你相信”滾雪球效應”嗎?:一旦獲得了起始的優勢,雪球就會越滾越大,優勢會越來越明顯。我相信,只要你敢開...
    q妙善閱讀 352評論 0 0
  • 有一天,詩人辛棄疾路過一個小村莊,這里鳥語花香,落英繽紛,美麗極了。村莊里有一戶人家,他們一家住在一間低矮...
    兮兮打不過閱讀 1,589評論 0 4