javascript初探LeetCode之4.Median of Two Sorted Arrays

題目

There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

example

nums1 = [1, 3]
nums2 = [2]
The median is 2.0
nums1 = [1, 2]
nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5

分析

這是leetcode上的第4題,難度為hard,就是兩有序數(shù)組的中值(中位數(shù))。暴力做法是將兩數(shù)組歸并排序成一個有序數(shù)組,接著就可以找到中位數(shù),但是時間復(fù)雜度O(m*n),空間復(fù)雜度O(m+n)。題目要求的時間復(fù)雜度O(log (m+n)),算法的時間復(fù)雜度中有log,多是用了分治法的思想。

考慮A和B兩個有序數(shù)組:

  • 1、如果A的中位數(shù)小于B的中位數(shù),那么A和B合一起后的中位數(shù)肯定存在于A的后半段和B的前半段。
  • 2、如果A的中位數(shù)大于B的中位數(shù),那么A和B合一起后的中位數(shù)肯定存在于A的前半段和B的后半段。
  • 3、如果A的中位數(shù)等于B的中位數(shù),那A和B合一起的中位數(shù)就等于A中的中位數(shù),也等于B中的中位數(shù)。
    這樣就可以不斷縮小中位數(shù)在A和B中的區(qū)間,這也是二分遞歸的主要思想,更細的在代碼中有注釋。

js實現(xiàn)

不帶注釋版:

/**
 * @param {number[]} nums1
 * @param {number[]} nums2
 * @return {number}
 */
var getMedian = function(arr1,start1,len1,arr2,start2,len2,k){
    if(len1 - start1 > len2 -start2)
        return getMedian(arr2, start2, len2, arr1, start1, len1, k);
    if(len1 - start1 == 0)
        return arr2[k - 1];
    if(k == 1)
        return arr1[start1] > arr2[start2] ? arr2[start2] : arr1[start1]; 
    var p1 = start1 + (len1 - start1 < parseInt(k / 2) ? len1 - start1 : parseInt(k / 2)); 
    var p2 = start2 + k - p1 + start1;
    if(arr1[p1 - 1] < arr2[p2 - 1])
        return getMedian(arr1,  p1, len1, arr2, start2, len2, k - p1 + start1);
        else if(arr1[p1 - 1] > arr2[p2 -1])
            return getMedian(arr1, start1, len1, arr2, p2, len2, k - p2 + start2);
        else
            return arr1[p1 - 1];
}
var findMedianSortedArrays = function(nums1, nums2) {
    var len1 = nums1.length;
    var len2 = nums2.length;
    var size = len1 + len2;
    if(size % 2 == 1)
        return getMedian(nums1, 0, len1, nums2, 0, len2, parseInt(size / 2 + 1));
    else
        return (getMedian(nums1, 0, len1, nums2, 0, len2, parseInt(size / 2)) + getMedian(nums1, 0, len1, nums2, 0, len2, parseInt(size / 2 + 1))) /2;
};

帶注釋版:

/**
 * @param {number[]} nums1
 * @param {number[]} nums2
 * @return {number}
 */
var getMedian = function(arr1,start1,len1,arr2,start2,len2,k){
/*
這里的k就相對于是每次遞歸要尋找的第k小值,比如第一次開始,就相對于是尋找第parseInt(size / 2 + 1)小值或者第parseInt(size / 2)小值。
每次遞歸都會根據(jù)二分時重新確定的arr1和arr2的區(qū)間和k的值。start1和start2之前的元素都被排除
其中k = k - 此次遞歸中舍棄的那段里面元素都小于中位數(shù)的區(qū)間的長度
*/
    if(len1 - start1 > len2 -start2)
        //這樣讓后續(xù)的遞歸中保證arr1是較短的那個,這樣可以省去一些重復(fù)的判斷
        return getMedian(arr2, start2, len2, arr1, start1, len1, k);
    if(len1 - start1 == 0)
        //表明arr1中可能存在中位數(shù)的區(qū)間長度為0,即此次遞歸中的第k小值只可能存在arr2中,arr2有序,所以就是arr2[k - 1]
        return arr2[k - 1];
    if(k == 1)
        //經(jīng)過上面的if判斷,此時中位數(shù)可能存在A或B中,不斷遞歸k值不斷縮小。
        //此次遞歸要求第1小值,那就直接把arr1和arr2的第一個元素比較一下,返回較小的那個。
        return arr1[start1] > arr2[start2] ? arr2[start2] : arr1[start1]; 
    var p1 = start1 + (len1 - start1 < parseInt(k / 2) ? len1 - start1 : parseInt(k / 2)); //arr1中位數(shù)的位置,因為arr1是較短的那個數(shù)組,所以需要加個判斷
    var p2 = start2 + k - p1 + start1;//arr2中位數(shù)的位置
    if(arr1[p1 - 1] < arr2[p2 - 1])//因為數(shù)組元素index從0開始,所以減一,這里if、if else和else對應(yīng)的三種情況就是分析中的主要思想
        return getMedian(arr1,  p1, len1, arr2, start2, len2, k - p1 + start1);
        else if(arr1[p1 - 1] > arr2[p2 -1])
            return getMedian(arr1, start1, len1, arr2, p2, len2, k - p2 + start2);
        else
            return arr1[p1 - 1];
}
var findMedianSortedArrays = function(nums1, nums2) {
    var len1 = nums1.length;
    var len2 = nums2.length;
    var size = len1 + len2;
    if(size % 2 == 1)
        //如果A和B長度之和為奇數(shù),則中位數(shù)只有一個
        return getMedian(nums1, 0, len1, nums2, 0, len2, parseInt(size / 2 + 1));
    else
        //如果A和B長度之和為偶數(shù),則中位數(shù)為最中間兩數(shù)的平均值
        return (getMedian(nums1, 0, len1, nums2, 0, len2, parseInt(size / 2)) + getMedian(nums1, 0, len1, nums2, 0, len2, parseInt(size / 2 + 1))) /2;
};

總結(jié)

二分通過遞歸不斷縮小問題的規(guī)模,效率比暴力歸并排序要高,但是同樣需要注意數(shù)組長度的奇偶和邊界。還有就是js里的k/2是不會自動取整的,所以需要用parseInt處理一下。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,247評論 6 543
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 99,520評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,362評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,805評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,541評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,896評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,887評論 3 447
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 43,062評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 49,608評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 41,356評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,555評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,077評論 5 364
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 44,769評論 3 349
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,175評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,489評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,289評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,516評論 2 379

推薦閱讀更多精彩內(nèi)容