Improved Word Representation Learning with Sememes

Topic: Word Representation
Dataset: Sogou-T, HowNet

  • 1889 distinct sememes
  • 2.4 average senses for each word
  • 1.6 average sememes for each sense
  • 42.2% of words have multiple senses.

Methodology:
Sememe-Encoded Word Representation Learning(SE WRL)
This framework regards each word sense as a combination of its sememes, and iteratively performs word sense disambiguation according to their contexts and learn representations of sememes, senses and words by extending Skip-gram in word2vec (Mikolov et al., 2013)

Word, sense, sememe

A). Simple Sememe Aggregation Model
For each word, SSA considers all sememes in all senses of the word together, and represents the target word using the average of all its sememe embeddings.
簡(jiǎn)單的sememe聚合模型在低頻詞上能有更好的表現(xiàn),因?yàn)樵趥鹘y(tǒng)skipgram模型中低頻詞不能得到很好的訓(xùn)練,然而在SSA中通過(guò)sememe embeddings 低頻詞被解碼為sememe并通過(guò)其他詞得到良好的訓(xùn)練。

B). Sememe Attention over Context Model
The SSA Model replaces the target word embedding with the aggregated sememe embeddings to encode sememe information into word representa- tion learning. However, each word in SSA model still has only one single representation in different contexts, which cannot deal with polysemy of most words. It is intuitive that we should construct distinct embeddings for a target word according to specific contexts, with the favor of word sense annotation in HowNet.

attention

每一個(gè)context word擁有一個(gè)attention weight,attention weight 由目標(biāo)詞w和sense向量之間的相關(guān)度,其中sense向量由其組成sememe向量的平均值表示

Sememe Attention over Context Model

C). Sememe Attention over Target Model
The process can also be applied to select appropriate senses for the target word, by taking context words as attention.

attention

對(duì)于Context Model,只有一個(gè)target word用來(lái)學(xué)習(xí)context words 的sense權(quán)重;
對(duì)于Target Model,使用多個(gè)context words 來(lái)聯(lián)合學(xué)習(xí)target word 的sense 權(quán)重。
因而Target Model能夠產(chǎn)生更好的語(yǔ)義去模糊化結(jié)果,產(chǎn)生更準(zhǔn)確的語(yǔ)義表示。

Sememe Attention over Target Model
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書(shū)系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,106評(píng)論 6 542
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 99,441評(píng)論 3 429
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人,你說(shuō)我怎么就攤上這事。” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 178,211評(píng)論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我,道長(zhǎng),這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 63,736評(píng)論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 72,475評(píng)論 6 412
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 55,834評(píng)論 1 328
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,829評(píng)論 3 446
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 43,009評(píng)論 0 290
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 49,559評(píng)論 1 335
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 41,306評(píng)論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 43,516評(píng)論 1 374
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,038評(píng)論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,728評(píng)論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 35,132評(píng)論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 36,443評(píng)論 1 295
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 52,249評(píng)論 3 399
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 48,484評(píng)論 2 379

推薦閱讀更多精彩內(nèi)容

  • 1吳老師的思維轉(zhuǎn)的很快,不管榮老師講什么都可以反應(yīng)很快的對(duì)答,真心很厲害,而且越來(lái)越幽默,讓人相處起來(lái)很舒服2莎莎...
    幸運(yùn)的修行閱讀 198評(píng)論 0 0
  • 小黃,29歲,已是一個(gè)快兩歲寶寶的媽了。我倆是校友,雖我和她同歲,而我卻早她一年畢業(yè)。 在大學(xué)里我還不認(rèn)識(shí)小黃,我...
    肖之諾閱讀 749評(píng)論 0 1