一、前言
????通常,java中創建多線程的兩種方式:
- 直接繼承Thread;
- 實現Runnable接口。
????考慮到一些邏輯需要一定的先后順序,如果直接用這兩種方式都會有共同的缺點:
- 通常為阻塞式(通過join等待一個線程結束,但這樣就失去了多線程的意義),或者通過wait、notify、notifyAll并結合狀態變量等來進行并發設計,設計起來相當復雜;
- 線程執行完成后難以獲取線程執行結果(需要通過共享變量、線程間通信等方式來獲取, 比較復雜)
????由此,我們想到了多線程開發中常見的Future模式。開發中經常有一些操作可能比較耗時,但又不想阻塞式的等待,這時可以先執行一些其它操作,等其它操作完成后再去獲取耗時操作的結果,這就是Future模式的描述。對應于生活中例子比比皆是:比如,打開電飯煲燒米飯后繼續炒菜,等炒菜完了去看下米飯有沒有煲熟,過程中無需死等電飯煲把飯煲熟,只有在炒完菜后這個時間點,我們才嘗試去看電飯煲煲飯的結果,這就是Future模式的一個生活原型。
????java從1.5開始,在并發包中提供了Future模式的設計,我們這要結合Callable、Future/FutureTask就能很容易的使用Future模式。
二、Future模式的一個簡單示例
???? 我們來看一個簡單示例:
public static void main(String[] args) throws InterruptedException, ExecutionException
{
ExecutorService executor = Executors.newCachedThreadPool();
Future<Integer> future = executor.submit(new Callable<Integer>(){
@Override
public Integer call()
throws Exception
{
int total = 0;
for(int i = 5001; i<=10000; i++){
total += i;
}
return total;
}
});
System.out.print("Submit future task now...");
executor.shutdown();
int total = 0;
for(int i = 1; i<=5000; i++){
total += i;
}
total += future.get();
System.out.print("1+2+...+10000 = " + total);
}
示例中計算了1~10000且步長為1的等比數列之和,將數列拆均分成兩部分分別求和,最后進行累計。Future模式通常需要配合ExecutorService和Callable一起使用,代碼中采用ExecutorService的submit方法提交Callable線程,在主線程任務完成后獲取Callable線程的結果。
三、源碼分析
- ????
我們先直接看下Future類型的源碼:
public interface Future<V> {
boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();
boolean isDone();
V get() throws InterruptedException, ExecutionException;
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}
????
Future接口的5個方法含義如下:
- cancel(boolean mayInterruptIfRunning) : 取消任務, 取消成功返回true;入參mayInterruptIfRunning表示是否允許取消正在執行中的任務。
- isCancelled() : 返回是否取消成功
- isDone() : 返回任務是否已經完成
- get() : 返回執行結果,如果任務沒有完成會阻塞到任務完成再返回
- get(long timeout, TimeUnit unit) 獲取執行結果并設置超時時間,如果超時返回null
- ????
Future模式通常需要配合ExecutorService和Callable一起使用,通過ExecutorService的submit方法提交Callable線程。我們知道,execute()方法在Executor接口中定義,而submit()方法在ExecutorService接口中定義,ExecutorService接口繼承Executor接口:
public interface Executor {
void execute(Runnable command);
}
public interface ExecutorService extends Executor {
...
<T> Future<T> submit(Callable<T> task);
<T> Future<T> submit(Runnable task, T result);
Future<?> submit(Runnable task);
...
}
- ????
ExecutorService只是一個接口,我們以上一節的newCachedThreadPool為例,看下它的源碼:
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
- ????
上面結果返回的是一個ThreadPoolExecutor,它是ExecutorService的一個子類,看ThreadPoolExecutor源碼可以發現,ThreadPoolExecutor沒有實現submit方法,它的submit方法由其直接父類AbstractExecutorService實現:
...
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}
...
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
}
...
public <T> Future<T> submit(Runnable task, T result) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task, result);
execute(ftask);
return ftask;
}
...
- ????
在上面三個submit方法中,無論是Callable接口還是Runnable接口,均是轉化成了RunnableFuture實例,看下RunnableFuture的實現:
public interface RunnableFuture<V> extends Runnable, Future<V> {
/**
* Sets this Future to the result of its computation
* unless it has been cancelled.
*/
void run();
}
- ????
RunnableFuture接口同時繼承了Runnable接口和Future接口。再看下上面講Callable或Runnable轉化成RunnableFuture實例的實現:
...
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
return new FutureTask<T>(callable);
}
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
return new FutureTask<T>(runnable, value);
}
...
- ????
通過兩個newTaskFor方法分別將Callable和Runnable實例轉化成FutureTask實例,FutureTask是RunnableFuture的實現,上述源碼中涉及FutureTask的兩種構造函數:
...
private Callable<V> callable;
private volatile int state;
private static final int NEW = 0;
...
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW; // ensure visibility of callable
}
...
public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);
this.state = NEW; // ensure visibility of callable
}
...
- ????
對于Callable實例,直接將入參Callable對象賦值給this.callable屬性,并設置this.state屬性為NEW; 而對于Funnable實例,需要通過Executors類的callable(runnable, result)方法轉化成Callable實例:
public static <T> Callable<T> callable(Runnable task, T result) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter<T>(task, result);
}
- ????
Executors類的callable(runnable, result)方法實際生成了一個RunnableAdapter對象,看下其源碼:
static final class RunnableAdapter<T> implements Callable<T> {
final Runnable task;
final T result;
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
task.run();
return result;
}
}
????
顯而易見,RunnableAdapter類實現了Callable接口的call()方法,內部調用了Runnable實例的run()方法,并返回預先傳過來的result值。
- ????
回過頭來看下,FutureTask類實現了RunnableFuture接口,進而實現了Runnable接口和Future接口的統一,那么它是如何實現Runnable接口的run()方法的呢?看下其源碼:
public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
...
protected void set(V v) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = v;
UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
finishCompletion();
}
}
...
protected void setException(Throwable t) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = t;
UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
finishCompletion();
}
}
????
可以看到FutureTask的run()方法內部調用了Runnable實例的call()方法,并且如果運行成功,將call()方法的返回值賦值給outcome,否則將異常賦值給outcome。
????
這樣也就容易理解ExecutorService的submit方法實現中是如何調用execute(Runnable command)方法的了,它將Runnable或者Callable實例統一轉換成了RunnableFuture實例,由于RunnableFuture繼承了Runnable接口,所以線程池可以通過execute(Runnable command)方法來進行處理。
- ????回過來看下FutureTask類的get()方法實現:
public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
}
...
private V report(int s) throws ExecutionException {
Object x = outcome;
if (s == NORMAL)
return (V)x;
if (s >= CANCELLED)
throw new CancellationException();
throw new ExecutionException((Throwable)x);
}
...
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}
int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null)
q = new WaitNode();
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
LockSupport.park(this);
}
}
- 如果狀態state為任務執行中,則阻塞等待,否則通過report(s)返回結果。返回結果時:如果狀態正常,則直接返回outcome;如果取消或者中斷,則返回CancellationException異常;如果執行異常,則返回ExecutionException。
- 上述源碼可以看出,get()方法通過awaitDone方法進行阻塞等待,awaitDone方法實現上采用LockSupport.park()進行線程阻塞,在FutureTasl的run()方法執行完成或異常發生,會執行set(V v)方法或setException(Throwable t)方法,兩者的實現中都會調用finishCompletion()方法,并在finishCompletion()方法中采用LockSupport.unpark方法進行了線程喚醒:
private void finishCompletion() {
// assert state > COMPLETING;
for (WaitNode q; (q = waiters) != null;) {
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
done();
callable = null; // to reduce footprint
}
四、總結
????通過上述舉例和源碼分析我們理解了java中Future模式的原理和使用,Future模式對于一些耗時操作(比如網絡請求等)的性能提升還是比較有用的,實際開發中可以靈活運用。