iOS http & https & 網絡請求過程

給大家總結網絡請求過程:

三次握手圖集:


看了此圖, 于是乎,問題來了, 不是TCP鏈接的時候需要三次握手么( http://blog.csdn.net/whuslei/article/details/6667471 ),問題確實來了, 三次握手每次都需要應用層的數據報文么, 于是乎搜得答案


具體鏈接:http://blog.csdn.net/luozenghui529480823/article/details/12978957? 了解了網絡鏈接, 有必要了解HTTP 和Https ,? 那么首先看一下Http :http://www.lxweimin.com/p/81632fea327c 這都是深度好文啊,就連cookie你都知道原理了吧,那么看看https吧,


? 一看我們的工程既有https又有http你會發現有這個東西,


既然 https如此安全, 那機制是什么呢,我們都知道HTTPS能夠加密信息,以免敏感信息被第三方獲取。所以很多銀行網站或電子郵箱等等安全級別較高的服務都會采用HTTPS協議。

下面我們介紹下https:

HTTPS其實是有兩部分組成:HTTP +SSL/ TLS,也就是在HTTP上又加了一層處理加密信息的模塊。服務端和客戶端的信息傳輸都會通過TLS進行加密,所以傳輸的數據都是加密后的數據。具體是如何進行加密,解密,驗證的,且看下圖。

1. 客戶端發起HTTPS請求

這個沒什么好說的,就是用戶在瀏覽器里輸入一個https網址,然后連接到server的443端口。

2. 服務端的配置

采用HTTPS協議的服務器必須要有一套數字證書,可以自己制作,也可以向組織申請。區別就是自己頒發的證書需要客戶端驗證通過,才可以繼續訪問,而使用受信任的公司申請的證書則不會彈出提示頁面(startssl就是個不錯的選擇,有1年的免費服務)。這套證書其實就是一對公鑰和私鑰。如果對公鑰和私鑰不太理解,可以想象成一把鑰匙和一個鎖頭,只是全世界只有你一個人有這把鑰匙,你可以把鎖頭給別人,別人可以用這個鎖把重要的東西鎖起來,然后發給你,因為只有你一個人有這把鑰匙,所以只有你才能看到被這把鎖鎖起來的東西。

3. 傳送證書

這個證書其實就是公鑰,只是包含了很多信息,如證書的頒發機構,過期時間等等。

4. 客戶端解析證書

這部分工作是有客戶端的TLS來完成的,首先會驗證公鑰是否有效,比如頒發機構,過期時間等等,如果發現異常,則會彈出一個警告框,提示證書存在問題。如果證書沒有問題,那么就生成一個隨即值。然后用證書對該隨機值進行加密。就好像上面說的,把隨機值用鎖頭鎖起來,這樣除非有鑰匙,不然看不到被鎖住的內容。

5. 傳送加密信息

這部分傳送的是用證書加密后的隨機值,目的就是讓服務端得到這個隨機值,以后客戶端和服務端的通信就可以通過這個隨機值來進行加密解密了。

6. 服務段解密信息

服務端用私鑰解密后,得到了客戶端傳過來的隨機值(私鑰),然后把內容通過該值進行對稱加密。所謂對稱加密就是,將信息和私鑰通過某種算法混合在一起,這樣除非知道私鑰,不然無法獲取內容,而正好客戶端和服務端都知道這個私鑰,所以只要加密算法夠彪悍,私鑰夠復雜,數據就夠安全。

7. 傳輸加密后的信息

這部分信息是服務段用私鑰加密后的信息,可以在客戶端被還原

8. 客戶端解密信息

客戶端用之前生成的私鑰解密服務段傳過來的信息,于是獲取了解密后的內容。整個過程第三方即使監聽到了數據,也束手無策。


SSL的位置

SSL介于應用層和TCP層之間。應用層數據不再直接傳遞給傳輸層,而是傳遞給SSL層,SSL層對從應用層收到的數據進行加密,并增加自己的SSL頭。

RSA性能是非常低的,原因在于尋找大素數、大數計算、數據分割需要耗費很多的CPU周期,所以一般的HTTPS連接只在第一次握手時使用非對稱加密,通過握手交換對稱加密密鑰,在之后的通信走對稱加密。

http://www.cnblogs.com/ttltry-air/archive/2012/08/20/2647898.html

HTTPS在傳輸數據之前需要客戶端(瀏覽器)與服務端(網站)之間進行一次握手,在握手過程中將確立雙方加密傳輸數據的密碼信息。TLS/SSL協議不僅僅是一套加密傳輸的協議,更是一件經過藝術家精心設計的藝術品,TLS/SSL中使用了非對稱加密,對稱加密以及HASH算法。握手過程的具體描述如下:

1.瀏覽器將自己支持的一套加密規則發送給網站。

2.網站從中選出一組加密算法與HASH算法,并將自己的身份信息以證書的形式發回給瀏覽器。證書里面包含了網站地址,加密公鑰,以及證書的頒發機構等信息。

3.瀏覽器獲得網站證書之后瀏覽器要做以下工作

a)驗證證書的合法性(頒發證書的機構是否合法,證書中包含的網站地址是否與正在訪問的地址一致等),如果證書受信任,則瀏覽器欄里面會顯示一個小鎖頭,否則會給出證書不受信的提示。

b) 如果證書受信任,或者是用戶接受了不受信的證書,瀏覽器會生成一串隨機數的密碼,并用證書中提供的公鑰加密。

c)使用約定好的HASH算法計算握手消息,并使用生成的隨機數對消息進行加密,最后將之前生成的所有信息發送給網站。

4.網站接收瀏覽器發來的數據之后要做以下的操作:

a) 使用自己的私鑰將信息解密取出密碼,使用密碼解密瀏覽器發來的握手消息,并驗證HASH是否與瀏覽器發來的一致。

b) 使用密碼加密一段握手消息,發送給瀏覽器。

5.瀏覽器解密并計算握手消息的HASH,如果與服務端發來的HASH一致,此時握手過程結束,之后所有的通信數據將由之前瀏覽器生成的隨機密碼并利用對稱加密算法進行加密

這里瀏覽器與網站互相發送加密的握手消息并驗證,目的是為了保證雙方都獲得了一致的密碼,并且可以正常的加密解密數據,為后續真正數據的傳輸做一次測試。另外,HTTPS一般使用的加密與HASH算法如下:

非對稱加密算法:RSA,DSA/DSS

對稱加密算法:AES,RC4,3DES

HASH算法:MD5,SHA1,SHA256

總結:

服務器 用RSA生成公鑰和私鑰

把公鑰放在證書里發送給客戶端,私鑰自己保存

客戶端首先向一個權威的服務器檢查證書的合法性,如果證書合法,客戶端產生一段隨機數,這個隨機數就作為通信的密鑰,我們稱之為對稱密鑰,用公鑰加密這段隨機數,然后發送到服務器

服務器用密鑰解密獲取對稱密鑰,然后,雙方就已對稱密鑰進行加密解密通信了

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,182評論 6 543
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,489評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,290評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,776評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,510評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,866評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,860評論 3 447
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,036評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,585評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,331評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,536評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,058評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,754評論 3 349
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,154評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,469評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,273評論 3 399
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,505評論 2 379

推薦閱讀更多精彩內容