cross-fields搜索,一個唯一標識,跨了多個field。比如一個人,標識,是姓名;一個建筑,它的標識是地址。姓名可以散落在多個field中,比如first_name和last_name中,地址可以散落在country,province,city中。
跨多個field搜索一個標識,比如搜索一個人名,或者一個地址,就是cross-fields搜索
初步來說,如果要實現,可能用most_fields比較合適。因為best_fields是優先搜索單個field最匹配的結果,cross-fields本身就不是一個field的問題了。
POST /forum/article/_bulk
{ "update": { "_id": "1"} }
{ "doc" : {"author_first_name" : "Peter", "author_last_name" : "Smith"} }
{ "update": { "_id": "2"} }
{ "doc" : {"author_first_name" : "Smith", "author_last_name" : "Williams"} }
{ "update": { "_id": "3"} }
{ "doc" : {"author_first_name" : "Jack", "author_last_name" : "Ma"} }
{ "update": { "_id": "4"} }
{ "doc" : {"author_first_name" : "Robbin", "author_last_name" : "Li"} }
{ "update": { "_id": "5"} }
{ "doc" : {"author_first_name" : "Tonny", "author_last_name" : "Peter Smith"} }
GET /forum/article/_search
{
"query": {
"multi_match": {
"query": "Peter Smith",
"type": "most_fields",
"fields": [ "author_first_name", "author_last_name" ]
}
}
}
Peter Smith,匹配author_first_name,匹配到了Smith,這時候它的分數很高,為什么啊???
因為IDF分數高,IDF分數要高,那么這個匹配到的term(Smith),在所有doc中的出現頻率要低,author_first_name field中,Smith就出現過1次
Peter Smith這個人,doc 1,Smith在author_last_name中,但是author_last_name出現了兩次Smith,所以導致doc 1的IDF分數較低
不要有過多的疑問,一定是這樣嗎?
{
"took": 2,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 3,
"max_score": 0.6931472,
"hits": [
{
"_index": "forum",
"_type": "article",
"_id": "2",
"_score": 0.6931472,
"_source": {
"articleID": "KDKE-B-9947-#kL5",
"userID": 1,
"hidden": false,
"postDate": "2017-01-02",
"tag": [
"java"
],
"tag_cnt": 1,
"view_cnt": 50,
"title": "this is java blog",
"content": "i think java is the best programming language",
"sub_title": "learned a lot of course",
"author_first_name": "Smith",
"author_last_name": "Williams"
}
},
{
"_index": "forum",
"_type": "article",
"_id": "1",
"_score": 0.5753642,
"_source": {
"articleID": "XHDK-A-1293-#fJ3",
"userID": 1,
"hidden": false,
"postDate": "2017-01-01",
"tag": [
"java",
"hadoop"
],
"tag_cnt": 2,
"view_cnt": 30,
"title": "this is java and elasticsearch blog",
"content": "i like to write best elasticsearch article",
"sub_title": "learning more courses",
"author_first_name": "Peter",
"author_last_name": "Smith"
}
},
{
"_index": "forum",
"_type": "article",
"_id": "5",
"_score": 0.51623213,
"_source": {
"articleID": "DHJK-B-1395-#Ky5",
"userID": 3,
"hidden": false,
"postDate": "2017-03-01",
"tag": [
"elasticsearch"
],
"tag_cnt": 1,
"view_cnt": 10,
"title": "this is spark blog",
"content": "spark is best big data solution based on scala ,an programming language similar to java",
"sub_title": "haha, hello world",
"author_first_name": "Tonny",
"author_last_name": "Peter Smith"
}
}
]
}
}
問題1:只是找到盡可能多的field匹配的doc,而不是某個field完全匹配的doc
問題2:most_fields,沒辦法用minimum_should_match去掉長尾數據,就是匹配的特別少的結果
問題3:TF/IDF算法,比如Peter Smith和Smith Williams,搜索Peter Smith的時候,由于first_name中很少有Smith的,所以query在所有document中的頻率很低,得到的分數很高,可能Smith Williams反而會排在Peter Smith前面