從best-fields換成most-fields策略
best-fields策略,主要是說將某一個field匹配盡可能多的關鍵詞的doc優先返回回來
most-fields策略,主要是說盡可能返回更多field匹配到某個關鍵詞的doc,優先返回回來
POST /forum/_mapping/article
{
"properties": {
"sub_title": {
"type": "text",
"analyzer": "english",
"fields": {
"std": {
"type": "text",
"analyzer": "standard"
}
}
}
}
}
POST /forum/article/_bulk
{ "update": { "_id": "1"} }
{ "doc" : {"sub_title" : "learning more courses"} }
{ "update": { "_id": "2"} }
{ "doc" : {"sub_title" : "learned a lot of course"} }
{ "update": { "_id": "3"} }
{ "doc" : {"sub_title" : "we have a lot of fun"} }
{ "update": { "_id": "4"} }
{ "doc" : {"sub_title" : "both of them are good"} }
{ "update": { "_id": "5"} }
{ "doc" : {"sub_title" : "haha, hello world"} }
GET /forum/article/_search
{
"query": {
"match": {
"sub_title": "learning courses"
}
}
}
{
"took": 3,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 1.219939,
"hits": [
{
"_index": "forum",
"_type": "article",
"_id": "2",
"_score": 1.219939,
"_source": {
"articleID": "KDKE-B-9947-#kL5",
"userID": 1,
"hidden": false,
"postDate": "2017-01-02",
"tag": [
"java"
],
"tag_cnt": 1,
"view_cnt": 50,
"title": "this is java blog",
"content": "i think java is the best programming language",
"sub_title": "learned a lot of course"
}
},
{
"_index": "forum",
"_type": "article",
"_id": "1",
"_score": 0.5063205,
"_source": {
"articleID": "XHDK-A-1293-#fJ3",
"userID": 1,
"hidden": false,
"postDate": "2017-01-01",
"tag": [
"java",
"hadoop"
],
"tag_cnt": 2,
"view_cnt": 30,
"title": "this is java and elasticsearch blog",
"content": "i like to write best elasticsearch article",
"sub_title": "learning more courses"
}
}
]
}
}
sub_title用的是english analyzer,所以還原了單詞
為什么,因為如果我們用的是類似于english analyzer這種分詞器的話,就會將單詞還原為其最基本的形態,stemmer
learning --> learn
learned --> learn
courses --> course
sub_titile: learning coureses --> learn course
{ "doc" : {"sub_title" : "learned a lot of course"} },就排在了{ "doc" : {"sub_title" : "learning more courses"} }的前面
GET /forum/article/_search
{
"query": {
"match": {
"sub_title": "learning courses"
}
}
}
GET /forum/article/_search
{
"query": {
"multi_match": {
"query": "learning courses",
"type": "most_fields",
"fields": [ "sub_title", "sub_title.std" ]
}
}
}
{
"took": 2,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 1.219939,
"hits": [
{
"_index": "forum",
"_type": "article",
"_id": "2",
"_score": 1.219939,
"_source": {
"articleID": "KDKE-B-9947-#kL5",
"userID": 1,
"hidden": false,
"postDate": "2017-01-02",
"tag": [
"java"
],
"tag_cnt": 1,
"view_cnt": 50,
"title": "this is java blog",
"content": "i think java is the best programming language",
"sub_title": "learned a lot of course"
}
},
{
"_index": "forum",
"_type": "article",
"_id": "1",
"_score": 1.012641,
"_source": {
"articleID": "XHDK-A-1293-#fJ3",
"userID": 1,
"hidden": false,
"postDate": "2017-01-01",
"tag": [
"java",
"hadoop"
],
"tag_cnt": 2,
"view_cnt": 30,
"title": "this is java and elasticsearch blog",
"content": "i like to write best elasticsearch article",
"sub_title": "learning more courses"
}
}
]
}
}
你問我,具體的分數怎么算出來的,很難說,因為這個東西很復雜, 還不只是TF/IDF算法。因為不同的query,不同的語法,都有不同的計算score的細節。
與best_fields的區別
(1)best_fields,是對多個field進行搜索,挑選某個field匹配度最高的那個分數,同時在多個query最高分相同的情況下,在一定程度上考慮其他query的分數。簡單來說,你對多個field進行搜索,
就想搜索到某一個field盡可能包含更多關鍵字的數據
優點:通過best_fields策略,以及綜合考慮其他field,還有minimum_should_match支持,可以盡可能精準地將匹配的結果推送到最前面
缺點:除了那些精準匹配的結果,其他差不多大的結果,排序結果不是太均勻,沒有什么區分度了
實際的例子:百度之類的搜索引擎,最匹配的到最前面,但是其他的就沒什么區分度了
(2)most_fields,綜合多個field一起進行搜索,盡可能多地讓所有field的query參與到總分數的計算中來,此時就會是個大雜燴,出現類似best_fields案例最開始的那個結果,結果不一定精準,某一
個document的一個field包含更多的關鍵字,但是因為其他document有更多field匹配到了,所以排在了前面;所以需要建立類似sub_title.std這樣的field,盡可能讓某一個field精準匹配query string
,貢獻更高的分數,將更精準匹配的數據排到前面
優點:將盡可能匹配更多field的結果推送到最前面,整個排序結果是比較均勻的
缺點:可能那些精準匹配的結果,無法推送到最前面
實際的例子:wiki,明顯的most_fields策略,搜索結果比較均勻,但是的確要翻好幾頁才能找到最匹配的結果