Author: Zongwei Zhou | 周縱葦
Weibo: @MrGiovanni
Email: zongweiz@asu.edu
References.
官方文檔:multi_gpu_model
以及Google
0. 誤區
目前Keras是支持了多個GPU同時訓練網絡,非常容易,但是靠以下這個代碼是不行的。
os.environ["CUDA_VISIBLE_DEVICES"] = "1,2"
當你監視GPU的使用情況(nvidia-smi -l 1
)的時候會發現,盡管GPU不空閑,實質上只有一個GPU在跑,其他的就是閑置的占用狀態,也就是說,如果你的電腦里面有多張顯卡,無論有沒有上面的代碼,Keras都會默認的去占用所有能檢測到的GPU。這行代碼在你只需要一個GPU的時候時候用的,也就是可以讓Keras檢測不到電腦里其他的GPU。假設你一共有三張顯卡,每個顯卡都是有自己的標號的(0, 1, 2),為了不影響別人的使用,你只用其中一個,比如用gpu=1的這張,那么
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
然后再監視GPU的使用情況(nvidia-smi -l 1
),確實只有一個被占用,其他都是空閑狀態。所以這是一個Keras使用多顯卡的誤區,它并不能同時利用多個GPU。
1. 目的
為什么要同時用多個GPU來訓練?
單個顯卡內存太小 -> batch size無法設的比較大,有時甚至batch_size=1都內存溢出(OUT OF MEMORY)
從我跑深度網絡的經驗來看,batch_size設的大一點會比較好,相當于每次反向傳播更新權重,網絡都可以看到更多的樣本,從而不會每次iteration都過擬合到不同的地方去Don't Decay the Learning Rate, Increase the Batch Size。當然,我也看過有論文說也不能設的過大,原因不明... 反正我也沒有機會試過。我建議的batch_size大概就是64~256的范圍內,都沒什么大問題。
但是隨著現在網絡的深度越來越深,對于GPU的內存要求也越來越大,很多入門的新人最大的問題往往不是代碼,而是從Github里面抄下來的代碼自己的GPU太渣,實現不了,只能降低batch_size,最后訓練不出那種效果。
解決方案兩個:一是買一個超級牛逼的GPU,內存巨大無比;二是買多個一般般的GPU,一起用。
第一個方案不行,因為目前即便最好的NVIDIA顯卡,內存也不過十幾個G了不起了,網絡一深也掛,并且買一個牛逼顯卡的性價比不高。所以、學會在Keras下用多個GPU是比較靠譜的選擇。
2. 實現
2.1 設計一個類
cite: parallel_model.py
import tensorflow as tf
import keras.backend as K
import keras.layers as KL
import keras.models as KM
class ParallelModel(KM.Model):
"""Subclasses the standard Keras Model and adds multi-GPU support.
It works by creating a copy of the model on each GPU. Then it slices
the inputs and sends a slice to each copy of the model, and then
merges the outputs together and applies the loss on the combined
outputs.
"""
def __init__(self, keras_model, gpu_count):
"""Class constructor.
keras_model: The Keras model to parallelize
gpu_count: Number of GPUs. Must be > 1
"""
self.inner_model = keras_model
self.gpu_count = gpu_count
merged_outputs = self.make_parallel()
super(ParallelModel, self).__init__(inputs=self.inner_model.inputs,
outputs=merged_outputs)
def __getattribute__(self, attrname):
"""Redirect loading and saving methods to the inner model. That's where
the weights are stored."""
if 'load' in attrname or 'save' in attrname:
return getattr(self.inner_model, attrname)
return super(ParallelModel, self).__getattribute__(attrname)
def summary(self, *args, **kwargs):
"""Override summary() to display summaries of both, the wrapper
and inner models."""
super(ParallelModel, self).summary(*args, **kwargs)
self.inner_model.summary(*args, **kwargs)
def make_parallel(self):
"""Creates a new wrapper model that consists of multiple replicas of
the original model placed on different GPUs.
"""
# Slice inputs. Slice inputs on the CPU to avoid sending a copy
# of the full inputs to all GPUs. Saves on bandwidth and memory.
input_slices = {name: tf.split(x, self.gpu_count)
for name, x in zip(self.inner_model.input_names,
self.inner_model.inputs)}
output_names = self.inner_model.output_names
outputs_all = []
for i in range(len(self.inner_model.outputs)):
outputs_all.append([])
# Run the model call() on each GPU to place the ops there
for i in range(self.gpu_count):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i):
# Run a slice of inputs through this replica
zipped_inputs = zip(self.inner_model.input_names,
self.inner_model.inputs)
inputs = [
KL.Lambda(lambda s: input_slices[name][i],
output_shape=lambda s: (None,) + s[1:])(tensor)
for name, tensor in zipped_inputs]
# Create the model replica and get the outputs
outputs = self.inner_model(inputs)
if not isinstance(outputs, list):
outputs = [outputs]
# Save the outputs for merging back together later
for l, o in enumerate(outputs):
outputs_all[l].append(o)
# Merge outputs on CPU
with tf.device('/cpu:0'):
merged = []
for outputs, name in zip(outputs_all, output_names):
# If outputs are numbers without dimensions, add a batch dim.
def add_dim(tensor):
"""Add a dimension to tensors that don't have any."""
if K.int_shape(tensor) == ():
return KL.Lambda(lambda t: K.reshape(t, [1, 1]))(tensor)
return tensor
outputs = list(map(add_dim, outputs))
# Concatenate
merged.append(KL.Concatenate(axis=0, name=name)(outputs))
return merged
2.2 調用非常簡潔
GPU_COUNT = 3 # 同時使用3個GPU
model = keras.applications.densenet.DenseNet201() # 比如使用DenseNet-201
model = ParallelModel(model, GPU_COUNT)
model.compile(optimizer=Adam(lr=1e-5), loss='binary_crossentropy', metrics = ['accuracy'])
model.fit(X_train, y_train,
batch_size=batch_size*GPU_COUNT,
epochs=nb_epoch, verbose=0, shuffle=True,
validation_data=(X_valid, y_valid))
model.save_weights('/path/to/save/model.h5')