手把手帶你讀文獻之 - USP38 Inhibits Type I Interferon Signaling by Editing TBK1?Ubiquitination through NLRP4 Signalosome

(如果你還不知道怎么突然要讀起這篇文獻來了,先戳這里看看吧)


手把手帶讀文獻模塊到了!接下來是各部分Results的思路整理、陌生概念解釋和思考題,快抓起文獻跟上我們的步伐開始讀吧!

PS: 不記得各個分子在通路中的位置的時候就回來看看這幅圖

Graphical Abstract.png

Result 1 - Identification of USP38 as an Essential Negative Regulator of Type I IFN Signaling

Summary中提到:

Here we report that USP38 negatively regulates type I IFN signaling by targeting the active form of TBK1 for degradation in vitro and in vivo.

那么,Result 1就是要確認USP38識別是一個重要的負調節I型干擾素的信號。

為了確定去泛素化酶在抗病毒免疫性中的角色,研究者運用生物信息學方法進行了數據分析,找到了一種去泛素化酶——USP38:

we screened 81 genes encoding deubiquitinases(DUBs)and identified USP38 as a negative regulator of type I IFN signaling.

運算得來終覺淺,還是得做點實驗

USP38 potently inhibited the activation of IFN-b by treatments of ...(lots of pathogen-associated molecular patterns) (Figure 1A).

也就是說,USP38可以強效抑制IFN-b的激活。

因為IFN-b激活時,需要合作激活 IRF3 和 NF-kB,于是我們想檢驗USP38是否直接影響IRF3信號。

we used an IFN- stimulated response element (ISRE) luciferase(熒光素酶) reporter to test whether USP38 directly affects IRF3 signaling.

結果發現 USP38 同樣抑制 ISRE-luc 活性。接下來,

We assessed phosphorylation of IRF3 in 293T cells, expressing USP38 together with RIG-I(N), MDA5, MAVS, STING-cGAS, or TRIF.

并發現 USP38 抑制所有這些先天免疫受體和接頭蛋白誘導的 IRF3 活化。

進一步的 qPCR 分析表明,

the mRNA levels of IFNa4, IFNb, IFIT1, IFIT2, and ISG15 in USP38 ectopic expression cells were markedly reduced during VSV infection (Figure S1B),

也就是 USP38 抑制干擾素刺激基因(ISGs)的表達。

為了確定生理條件下 USP38 的作用,

we efficiently knocked down USP38 in 293T cells, THP-1 cells, or human peripheral blood mononuclear cells (PBMCs,外周血細胞) (Figure S1C).

熒光素酶測定分析表明,

USP38 knockdown could enhance the IC poly(I:C)-, poly(dA:dT)-, or VSV-EGFP-induced ISRE activation (Figure 1C).

與這一結果相一致,我們發現敲除 USP38 顯著增強 IRF3 的磷酸化 (Figure 1D)。

為了證實這些發現,

we knocked down USP38 in THP-1 cells, 293T cells, A549 cells, or PBMCs, and we found that USP38 knockdown significantly increased the IFN-a4 and IFN-b expression, as well as IFN-b secretion induced by VSV-EGFP or HSV-1 infection (Figures 1E–1G and S1D–S1F).

進一步我們表明在這些細胞中的 USP38 敲除使他們抵抗 VSV EGFP 感染(Figure 1H, 1I, S1G, S1H)。

這些結果共同表明,USP38 負調節I型干擾素信號以及在人體各種細胞類型中的抗病毒免疫。

思考題:

這里用了哪幾個實驗驗證 USP38 負調節I型干擾素信號?

Results 2 - USP38 Deficiency Enhances Antiviral In Vivo

首先我們回顧一下SUMMARY:

Knockdown or knockout of USP38 increases K48-linked ubiquitination and degradation of TBK1, thus enhancing type I IFN signing.

并且,在Result1中得出的結論:

……suggesting that USP38 inhibits the expression of IFN-stimulated genes(ISGs)…Collectively,these results suggest that USP38 negatively regulates type I IFN signing as well as antiviral immunity human cell types.

那么,作為條件對照,說明USP38 缺失對抗病毒免疫的作用是必要的.

盡管Result1中有:

Further we showed that USP38 knockdown **in this cells **rendered them resistant to VSV-EGFP infection.

但由于都是體外實驗,所以這里進行體內實驗.


于是,實驗一,利用人工培育的USP38缺陷的小鼠進行細胞水平驗證.

To determine the fuction of USP38 in primary cells,we generated USP38-deficient mice using a TAL effector nuclease (TALEN)-based system,and we prepared bone marrow-derived macrophages(BMMs) from wild-type(WT) and Usp38`/` mice. Next we infected those BMMs for 16 or 24 hr with the RNA virus VSV or the DNA virus HSV-1.

結果是:

USP38ˉ/ ˉ BMMs produce 2- to 4-fold more IFN-阝in responds to VSV or HSV-1 than WT BMMs.

…deletion of USP38 had a strong effect on the expression of many ISGs…as well as the pro-inflammatory cytokines TNF-∝and IL-6……

We detected significantly less VSV or HSV-1 in USP38ˉ/ˉ BMMs than in WT BMMs.These data indicate a negative role for USP38 in the sensing of both RNA and DNA viruses in mouse BMMs.


接著是實驗二,在器官個體水平的實驗,不過這次為了更好說明USP38的"functional significance", 使用了高濃度病毒VSV. 結果是:

器官水平:

……We found that VSV loads in tissue sample infected Usp38'/' mice were significantly lower than those from WT mice 24 hr post-infection.

個體水平:

Importantly, Usp38ˉ/ˉ mice were signifcantly more resistant to VSV infection in overall survival compared with WT mice.

于是自然得出結論:USP38 Deficiency Enhances Antiviral Immunity In Vivo


陌生概念:

plaque-forming units(PFU):空斑形成單位,是一種測量每單位體積可以形成斑塊的顆粒數量的辦法;是一種功能性的測量,有缺陷或不影響目標細胞的病毒顆粒不產生斑塊.

最后是思考題:

Why they challenged Usp38ˉ/ˉ mice with VSV(1x10^8 plaque-forming units(PFU)/g)?

Result 3 - USP38 Interacts with TBK1 after Viral Infection

為了確定和USP38相互作用的分子,研究者主要進行了幾個實驗。

實驗一

we co-transfected 293T cells with RIG-I, MDA5, MAVS, TBK1, IKKi, or IRF3 together with increasing amounts of USP38 plus the IFN-β or ISRE luciferase reporter

and we found that USP38 inhibited activation of both luciferase reporters induced by RIG-I, MDA5, MAVS, TBK1, but not IKKi or IRF3 (Figure 3A).

將RIG-I、MAD-5、MAVS、TBK1、IKKi、IRF3與附帶了了熒光蛋白酶的IFN-β和ISRE共同導入細胞,試驗結果是USP38抑制了RIG-I、MAD-5、MAVS、TBK1誘導的熒光蛋白酶表達,但沒有抑制由IKKi or IRF3誘導的表達。(熒光蛋白酶用于報告IFN-β or ISRE的表達)

實驗二

Co-immunoprecipitation and immunoblot analyses revealed that USP38 specifically interacted with TBK1, but not MAVS, IKKi, IRF3, or IRF7 (Figure 3B).

免疫共沉淀和免疫印跡分析發現USP38與TBK1特異性相互作用。

實驗三

confocal microscopic analysis using 293T cells transfected with USP38-GFP and TBK1-dsRFP showed that USP38 co-localized with TBK1 in the cytosol (Figure 3C).

對帶有熒光蛋白的USP38與TBK1用共聚焦顯微鏡進行分析后,發現USP38與TBK1在胞液中共定位。


在這些實驗之后,我們已經看出了USP38和TBK1之間確實有交易一些關系,于是我們進一步研究

我們要驗證在生理條件下USP38與TBK1的配合。

we infected 293T cells, THP-1 cells, or PBMCs with VSV-EGFP, and we found that the interaction between USP38 and TBK1 was barely detectable in unstimulated cells (Figures 3D–3F).

我們發現在未感染的細胞中很少的USP38與TBK1共同作用的現象,在感染后的這三種細胞中均有顯著的增加。

進一步研究它的分子機理,我們想知道USP38的哪個結構域負責它與TBK1的交易共同作用。

we constructed several deletion constructs of USP38. Co-immunoprecipitation and immunoblot analyses revealed that the N-terminal USP domain of USP38 interacted with TBK1, but its C-terminal domain showed no interaction with TBK1 (Figure 3G).

我們構建了一系列殘缺的USP38,并讓它們分別與TBK1共免疫沉淀,免疫印跡分析。

于是我們發現,N端USP結構域和TKB1有共同作用,而C端沒有。

傳說中的思考題環節:

實驗一說明了什么?和這個result有什么聯系?
怎么理解Figure 3C?

Result 4 - USP38 Specifically Degrades Active TBK1

我們要去研究USP38與TBK1相互作用的分子機制。

恩,如何研究呢?

In 293T cells transfected with FLAG-tagged TBK1 and HA-tagged IRF3, together with increasing doses of USP38, we found that the concentration of TBK1 proteinde creased considerably with increasing USP38 expression. However, the mRNA level of TBK1 remained unchanged (Figure 4A), suggesting that USP38 causes TBK1 protein degradation.

TBK1隨USP38的增多而減少,但是TBK1的mRNA卻不變,暗示了USP38導致TBK1降解。

To determine the specificity of the USP38-mediated TBK1 degradation, we used other USP family members USP3 and USP13 as a control, and we found that USP38, but not USP3 or USP13, induced TBK1 degradation (Figure S3A).

這里用了USP3 and USP13作為對照,證明只有USP38導致TBK1降解。

To determine whether USP38 causes the degradation of other proteins, we performed a similar experiment and found that USP38 specifically degraded TBK1, but not IKKi, IKK-a, or IKK-b(Figure 4B).

這里用IKKi, IKK-a or IKK-b做對照,說明只有TBK1被USP38控制降解

To determine whether USP38 degrades TBK1 through aubiquitin-protease pathway, we performed experiments in the presence of the proteasome inhibitor MG-132 or 3-Methyladenine (3-MA), and we found that MG-132, but not 3-MA, blocked the degradation of TBK1 (Figure 4C), suggesting that USP38-induced TBK1 degradation is dependent on a proteasome pathway.

這里用了蛋白酶的抑制劑,結果TBK1不降解了,說明USP38是通過蛋白酶達到控制TBK1的效果的。

Murine USP38(mUSP38) showed similarinhibitory function of human USP38 protein (Figure S3B), suggesting a conserved function of USP38 between mice and humans.

小鼠和人類的USP38功能相似,USP38相對保守。

To determine whether USP38 can mediate degradation ofendogenous TBK1 under physiological conditions, we transfected 293T cells with USP38, and we found that endogenous TBK1 protein was unchanged (Figure S3C).

很奇怪的是USP38并沒有使外源的TBK1降解。于是問題來了。

We reasoned that USP38 may specifically target the activated form of TBK1 for degradation.

我們的猜測是USP38是在TBK1激活時才起作用。

于是設計實驗。

Therefore, we generated an inactive mutant ofTBK1 with a substitution of alanine for the serine at position 172 (S172A), which abrogates its auto-phosphorylation, and then we co-transfected the 293T cells with USP38, WT TBK1, or TBK1 (S172A). Indeed, we found that USP38 could not interact with mutant TBK1 (S172A) and failed to promote it for degradation (Figures 4F and 4G); however, TBK1 constitutive active mutant (S172E) showed an increasing binding ability to USP38 compared to WT TBK1 (Figure 4F).

這里用了一個失活的TBK1,果然USP38不能使TBK1降解了。

Furthermore, we found that USP38 expression reduced TBK1 protein, but not TBK1 mRNA, after VSV infection compared with 293T cells transfected with the empty vector (EV) (Figures 4H andS3D). Conversely,USP38knockdown in THP-1 cells increased endogenous TBK1 protein levels in cells infected with VSVEGFP or transfected with IC poly(I:C), but not in uninfected cells (Figures 4I andS3E).

這里說的是USP38沒有使TNK1的mRNA減少,而USP38 knockdown只在cells infected with VSVEGFP or transfected with IC poly中使TBK1增多,而在uninfected cells卻不行。

Similar results were obtained with WT or Usp38/BMMs with VSV or HSV-1 infection (Figure 4J). These results suggest that USP38 specifically degrades the active form (p-TBK1) of TBK1 after viral infection.

嗯,通過這些實驗數據證明了在病毒感染后USP38特異性的降低TBK1的活性。

思考題:

如何證明USP38是特異性調控TBK1的?
如何證明USP38是針對激活的TBK1的?

Result 5 - USP38 Midiates the K38-K48 Ubiquitination Transition of TBK1 on Lys670

在介紹這個result之前,回顧一下summary中的一句話

Knockdown or knockout of USP38 increases K33-linked ubiquitination, but it abrogates K48-linked ubiquitination and degrdation of TBK1, thus enhanceing type I IFN signaling.

而從題目中我們可以看出,result5正是從實驗角度對summary的這一部分的闡述。現在進入正題。


因為之前的研究顯示TBK1 在被病毒感染后 K48-linked and K63-linked ubiquitination都會發生,所以先驗證了一下,發現

USP38 markedly increased K48-linked, but not K63-linked ubiquitination of TBK1

說明USP38的作用在這里確實是只管K-48

然后

Since the K48-linked ubiquitination of TBK1 is regulated by NLRP4, DTX4, or TRIP protiens

所以看一下是不是USP38通過調節這些因子來調節TBK1, 結果

We did not observe any apparent differences in the protein abundance of NLRP4, DTX4, or TRIP in the process or absence of USP38 after viral infection(Figures S4A-S4C)

于是就有了第一段結尾的結果

USP38 regulates K48-linked ubiquitination of TBK1 via a distinct mechanism.

考慮到USP38是DUB,于是他們開始思考USP38是如何通過去泛素化增加而不是減少TBK1 K48-linked ubiquitination

他們利用USP38的突變體C545A, H857A實驗,發現突變體是不能使TBK1降解的,所以他們就得出了USP38的去泛素化活性是降解TBK1的前提這一結論。


基于以上實驗他們開始思考USP38會移去和加上哪種ubiquitin chain,于是他們做了這樣一個實驗

We performed experiments using 293T cells expressing FLAG-TBK1, Myc-USP38, and different.types of HA-tagged ubiquitin.

從Figures S4D-S4F中他們發現了K33-linked ubiquitination 被移去了。再與利用突變體不能移去K33-linked ubiquitination of TBK1這一結果對比,說明K33-linked poly-ubiquitin chain on TBK1的去除是依賴于USP38的去泛素化活性的。

另外,他們還發現TBK1在病毒感染后會經歷K48-和K33-linked ubiquitination,但是K48-linked ubiquitination是被促進的,所以他們想到了這個

USP38 may remove K33-linked ubiquitin chains and add K48-linked ubiquitin chains to TBK1 after viral infection.


如何在論證生理條件下會發生這樣的過程呢?這里用到了mass spectrometry analysis(質譜分析)

we performed mass spectrometry analysis of ubiquitinated TBK1 from 293T cells or USP38-/-293T cells by VSV infection, using a similar strategy as previously described(2014)

結果發現

ubiquitinated TBK1 with K33 or K48 linkage was hardly detected without viral infection.

并且,作為對比

after VSV infection, the increased K33-linked ubiquitinated TBK1 as well as decreased K48-linked ubiquitinated TBK1 in USP38?/? cells were readily detected by mass spectrometry analysis, compared to WT cells

所以有了

USP38 is responsible for the cleavage of K33-linked ubiquitin chains of TBK1

更深一步的研究是基于 confocal microscopic analysis ,他們發現

USP38 was colocalized with K33-linked. ubiquitin chains inside the cells, while the co-localization between USP38 and K33-linked ubiquitin chains was enhanced after HSV-1 infection.

所有上面這些研究最終得出的結論就是

USP38 is responsible for cleaving K33-linked ubiquitin chains from TBK1


至于如何證明接上K44-linked poly-ubiquitination of TBK1 at Lys670的問題(從summary之前的圖里面我們可以看到不論是移去還是接上都是在同一位點進行的),首先是先前研究

NLRP4 induced the K48-linked poly-ubiquitination of TBK1 at Lys670, leading to its proteasomal degration.

而這次更深入的研究目的是介紹發現在同一位點進行移去和連接的實驗原因

neither USP38 nor TRIP can degrate TBK1(K670R) mutants

TBK1 K670R mutant abrogates not only K48-linked ubiquitination but also K33-linked ubiquitination of TBK1

(實驗數據在Figures 5J-S4G 及Figures 5K and S4H)

通過這兩個實驗結果他們得出了

K33-和K48-linked ubiquitin chains may conjugate to TBK1 at the same amino acid position(即Lys670)

那么如何證明這兩個過程只在Lys670位進行呢?

we pulled down the WT TBK1 and TBK(K670R) mutant and checked the ratio of K33 and K48 poly-ubiquitin chains in the immunoprecitates by mass spectrometry analysis

發現在TBK1(K670R) 免疫共沉淀中沒有K33和K48 poly-ubiquitin信號

所以!位點只有這一個

最后!他們研究了是否K33-linked ubiquitin of TBK1 is more stable than the K48-linked ubiquitinated TBK1

方法是we performed the cycloheximide(CHX) assay and pulled down K33-, K63-, or K48-ubiquitinated TBK1.

這樣就發現他們的假設是正確的,也就是我們的結果

USP38 inhibits type I IFN signaling by removing K33-linked and promoting K48-linked poly-ubiquitination chains of TBK1 at Lys670

以上就是這個result的實驗思路和結果的敘述。

那么!傳說中的思考題時間到了!

USP38是如何通過K33-linked ubiquitination和K48-linked ubiquitination來控制TBK1的?
多組實驗是如何一步步證明K38-linked ubiquitin chains被移去及K48-linked ubiquitin chains被接上是在同一位點進行的?

Result 6 - USP38 Promotes TBK1 Degradation in an NLRP4-Dependent Manner

這一段主要講NLPR4在USP38 Promotes TBK1 Degradation中的重要性

首先有一個事實依據

Since both NLRP4 and USP38 degraded TBK1 by a similar mechanism that promoted the K48-linked ubiquitination of TBK1 at Lys670 (就是USP38與NLRP4作用效果類似)

然后提出猜想

NLRP4 and USP38 work together to regulate TBK1 stability.

之后用實驗證明


第一個實驗

we performed immunoprecipitation and immunoblot analysis in 293T cells expressing USP38, NLRP3, or NLRP4,

第一個實驗發現

USP38 interacted with NLRP4, but not with NLRP3 (Figure 6A).

然后第二個實驗驗證交互的過程

To demonstrate the interaction between USP38 and NLRP4 in physiological conditions, we infected THP-1 cells or PBMCs with VSV-EGFP for the indicated time points,

第二個實驗發現

and we observed the enhanced interaction between USP38 and NLRP4 after viral infection (Figures 6B and 6C). In addition, we found that the PYD and NOD domains of NLRP4 interacted with USP38 (Figure 6D), whereas the N-terminal domain of USP38 was essential for binding to NLRP4 (Figure 6E).

同時

Further experiments showed that USP38 was co-localized with TBK1 and NLRP4 (Figure S5A).

為了證實這些發現,又做了一些實驗 (括號內為結論)

(1)we specifically knocked downNLRP4 and found that【 the interaction between USP38 and TBK1was markedly attenuated (Figure 6F).】

(2)we demonstrated that【 the dynamic interaction between USP38 and TBK1 was totally abrogated 】in NLRP4 small interfering RNA (siRNA)- treated THP-1 cells after viral infection (Figure 6G).

(3)【we also observed the reduced interaction between TBK1 and TRIP or DTX4】 when NLRP4 was knocked down (Figures S5B and S5C).

結果顯示

These results suggest that USP38, TRIP, and DTX4 may bind to TBK1 in an NLRP4-dependent manner.

同時

Luciferase reporter assay further showed that the inhibition of ISRE-luc activity by USP38 could be completely relieved when NLRP4 was knocked down (Figures S5E and S5F).

綜合以上所有

Taken together, these results suggest that NLRP4 is indispensable for the inhibitory function of USP38.

。。。。貌似只有一個概念需要解釋

siRNA是一類約21~25nt的RNA分子,由Dicer(RNAaseⅢ家族中對雙鏈RNA具有特異性的酶)加工而成,通過完全互補配對的方式與目標mRNA結合,引起其降解,從而導致靶基因的的沉默

然后,問題來了

Which phenomenon has proved that the NLPR4 is essential?

Result 7 - Regulation of TBK1 Stability by the NLRP4 Signalosome

與本result 相關的introduction對應為:

Recently, we and others found that NLRP4/DTX4 and another E3 ligase TRAF-interacting protein (TRIP) induce the K48-linked poly-ubiquitination of TBK1, leading to its proteasomal degradation (Cui et al., 2012; Zhang et al., 2012)

所以這里就是要說NLRP4信號小體調節TBK1穩定性相關問題

開頭說到core protein NLRP3, 比較地引出了USP38, DTX4 AND TRIP三者與TBK1 的相互作用依賴于NLRP4。因此,根據發現,我們猜想:

NLRP4, together with USP38 and E3 ligases,might form the NLRP4 signalosome to control TBK1 stability and type I IFN signaling。

接下來我們分3個部分實驗驗證了猜想:


TBK1和NLRP4信號小體成員間的相互作用

方法是:

infected Myc-TRIP- and GFP-DTX4-expressingcells with VSV, and then we immunoprecipitated different complexes from cells, collected at different time points post-infection with either TBK1 or NLRP4 antibodies.

通過免疫印跡分析結果發現:

NLRP4 and USP38 targeted to TBK1 at 6 hr post-infection, whereas DTX4 and TRIP interacted with TBK1 at a later time point (at 8 hr) (Figure 7A)

Importantly, USP38, but not DTX4 or TRIP, constitutively interacted with NLRP4 in unstimulated cells (Figure 7B).

Interaction between NLRP4 and USP38 was further increased after viral infection. Interactions between NLRP4 and TRIP or DTX4 were detected at 6 or 8 hr, respectively, post-infection (Figure 7B).

這些結果都顯示了病毒入侵之后NLRP4信號小體的動態裝配。


NLRP4信號轉導體調節TBK1穩定性的分子機制

方法是:

generated NLRP4(-/-) and USP38(-/-) HEK293T cells

我們發現:

USP38(-/-)cells and NLRP4(-/-)cells showed increased ISRE luciferase activity, ISG expression, and antiviral immunity after viralinfection (Figures S6C–S6F).

有了這個,我們進一步就確定NLRP4和USP38在TBK1和NLRP4信號轉導體相互作用的角色:

USP38 deficiency does not affect the interaction of TBK1 with NLRP4, TRIP, or DTX4 (Figure 7C). By contrast, in NLRP4(-/-) cells, the interactions of TBK1 with USP38, TRIP, or DTX4 were completely abrogated (Figure 7D).

結果表明,在NLRP4信號轉導體中,NLRP4是一個鏈接USP38, TRIP和DTX4這三者與TBK1的關鍵蛋白,而TBK1與NLRP4, TRIP和DTX4的相互作用卻不依賴于USP38.


NLRP4信號小體成員如何影響TBK1的ubiquitination

實驗現象擺在這里:

observed increased levels of K33-linke dubiquitination and decreased levels of K48-linked ubiquitination of TBK1 in both USP38(-/-) and NLRP4(-/-) cells (Figures 7E and 7F).

還有:

TRIP or DTX4 deficiency only affected K48-linked ubiquitination, but not K33-linked ubiquitination, of TBK1 (Figures S7A and S7B).

結論告訴我們:

TBK1上K33-linked的泛素化的消除需要NLRP4和USP38,同時K48-linked的泛素化需要E3連接酶DTX4和TRIP。

還有有趣的一個現象:

although NLRP4 or TRIP still interacted with TBK1 in USP38(-/-) cells (Figure 7C), they could not cause TBK1 degradation in USP38(-/-) cells even after VSV infection or IC poly(I:C)treatment (Figures 7G,7H,S7C,and S7D).

相對應的是:

Overexpression of WT USP38, but not the USP38 (CA/ HA) mutant, restored the function of NLRP4 to degrade TBK1 in USP38(-/-) cells (Figure 7I)。

這就是說,對于NLRP4信號轉導體降解TBK1的全過程,USP38的去泛素化是灰常關鍵的。

而且,我們發現在NLRP4(-/-)細胞中USP38或者TRIP都不能降解TBK1.


因此,result 7的結論是:

NLRP4, USP38, TRIP, and DTX4 worked cooperatively as a signalosome to control TBK1 ubiquitination transition and degradation, thus inhibiting IFN-b signaling.。

So here comes a QUESTION:

Whats the mechanism for these members of the NLRP4 signalosome to control TBK1 ubiquitination transition and degradation?

Discussion

終于我們來到了最后的部分——Discussion. 在這部分中崔老師(或者是他的學生?)簡述了一下相關研究的情況,強調了這項研究的重要性,并根據這項研究本身和一些相關研究勾勒出了NLRP4信號小體調控TBK1以至于下游許多信號的全貌,并簡述了本研究在癌癥研究中的潛在應用。嗯,詳細內容就照例自己讀啦,反正大部分內容前面都已有提及。


最后,記得10月30日下午三點來北院101講學廳聽崔雋老師的親自講解哦?~

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,622評論 6 544
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,716評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,746評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,991評論 1 318
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,706評論 6 413
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 56,036評論 1 329
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 44,029評論 3 450
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,203評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,725評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,451評論 3 361
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,677評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,161評論 5 365
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,857評論 3 351
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,266評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,606評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,407評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,643評論 2 380

推薦閱讀更多精彩內容

  • **2014真題Directions:Read the following text. Choose the be...
    又是夜半驚坐起閱讀 9,780評論 0 23
  • 曾經天真的以為會是他手心里的寶、以為是那個可以隨時安心停靠的港灣、以為會是一輩子的依靠……那么多的以為終究只是一廂...
    獨孤晚晴閱讀 295評論 0 1
  • 寂寞曲折的小巷 黃昏婉約了垂楊 時光爬滿門墻 往事隨風搖晃 燈前,溪邊,樹下 無邪的繁春盛夏 稻香泛著鳴蛙 陌上似...
    魚之樂_334f閱讀 442評論 9 5