什么是斐波拉那契數列
斐波拉契數列(Fibonacci sequence),又稱黃金分割數列、因數學家列昂納多·斐波那契(Leonardoda Fibonacci)以兔子繁殖為例子而引入,故又稱為“兔子數列”,指的是這樣一個數列:1、1、2、3、5、8、13、21、34、……在數學上,斐波納契數列以如下被以遞歸的方法定義:F(0)=1,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)
也就是說斐波那契數列就是從第三個數開始(第一、二兩個數都是1),后面的數都是前兩個數之和。那么如何用Python來表示該數列呢?
算法思路:
- 初始化前兩個數a和b為1
- 從第三個數開始,大小等于前面兩個數之和,F(3)=F(1)+F(2)
- 用循環語句打印該數列
代碼示意:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a+b
n += 1
print 'Done'
fib(6)
運行結果:
圖片.png
計算過程:
圖片.png
擴展閱讀:
在打印列表的過程中,很多時候只用到前幾個元素,后面很多元素根本用不到,白白占用了存儲空間,特別是列表數量上百萬、千萬、甚至無窮大時,那么有沒有一種辦法可以用幾個元素就計算到第幾個呢?用生成器就可以解決這個問題。
把前面的函數print改成yield即可:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a+b
n += 1
print 'Done'
fib(6)