python裝飾器的使用

1. 裝飾者模式

裝飾者模式是常用的軟件設計模式之一。通過此設計模式,我們能夠在不修改任何底層代碼情況下,給已有對象賦予新的職責。python中可以用裝飾器簡單地實現裝飾者模式。

1.1 將函數作為參數傳遞

C/C++中,函數指針可以將函數作為參數傳遞給另一函數。而在python中,函數也是對象的一種,函數可以被引用,也可直接作為參數傳入函數,以及作為容器對象的元素。python中可以采用如下方法實現裝飾者模式:

#!/usr/bin/env python3.6
# -*- coding: utf-8 -*-

def add(x, y):
    result = x+y
    return result

def log(func):
    def wrapper(*args, **kwargs):
        result = func(*args)
        print(func.__name__,'has been called\n')
        return result
    return wrapper

if __name__ == '__main__':
    print(log(add)(1,2))

上述代碼中,log函數以需要被裝飾的函數作為參數,并返回函數對象。被返回的函數的參數為可變參數*args**kwargs*args參數會被封裝成tuple**kwargs參數則會被封裝成字典對象),以適應不同函數的不同參數,保證通用性。

1.2 裝飾器

上面的實現方法有些繁雜,所有調用被裝飾的函數之處的代碼,都要進行相應修改,自然不符合python簡潔易讀的特性。因此python中給出相應語法糖來增加可讀性和易用性,那便是“裝飾器”。

#!/usr/bin/env python3.6
# -*- coding: utf-8 -*-

from functools import wraps

def log(func):
    #@wraps(func)
    def wrapper(*args, **kwargs):
        result = func(*args)
        print(func.__name__,'has been called')
        return result
    return wrapper

#等價于add = log(add)
@log
def add(x, y):
    result = x+y
    return result

if __name__ == '__main__':
    print(add(1,2))
    print(add.__name__)

運行情況如下

>>print(add(1,2))
add has been called
3
>>print(add.__name__)
wrapper

但上述方法亦有缺陷,原函數add的元數據(比如名字、文檔字符串、注解和參數簽名)會丟失。為避免缺陷,任何時候你定義裝飾器的時候,都應該使用functools庫中的@wraps裝飾器來注解底層包裝函數(代碼中注釋部分)。@wraps有一個重要特征是它能讓你通過屬性 __wrapped__ 直接訪問被包裝函數。
改進后運行情況

>>print(add(1,2))
add has been called
3
>>print(add.__name__)
add

1.3 解除裝飾器

當裝飾器已經作用于某函數,而你想撤銷它,那么可以訪問 __wrapped__屬性來訪問原始函數

orig_add = add.__wrapped__
orig_add(1,2)

但若使用了多個裝飾器, __wrapped__屬性會變得不可控,應盡量避免使用。
若有如下代碼:

#!/usr/bin/env python3.6
# -*- coding: utf-8 -*-

import functools
import time

def metric(func):
    @functools.wraps(func)
    def wrapper(*args,**kv):
        print('Decorator1')
        f = func(*args,**kv)
        return f
    return wrapper

def logging(func):
    @functools.wraps(func)
    def wrapper(*args,**kv):
        print('Decorator2')
        f = func(*args,**kv)
        return f
    return wrapper

@metric
@logging
def normalize(name):
    sName = name[0:1].upper() + name[1:].lower()
    print(sName)

if __name__ == '__main__':
    normalize('heLlO')
    normalize.__wrapper__('')

運行情況如下

>>normalize('helLo')
Decorator1
Decorator2
Hello
>>normalize.__wrapped__('world')
Decorator2
World

1.4 定義帶參數的裝飾器

from functools import wraps

def log(text):
    def decorator(func):
        @wraps(func) 
        def wrappering(*args,**kv):
            print('%s %s():'%(text,func.__name__))
            return func(*args,**kv)
        return wrappering
    return decorator

@log('run')
def normalize(name):
    sName = name[0:1].upper() + name[1:].lower()
    print(sName)

裝飾器函數可以帶參數,最外層的函數會將參數傳給內層的裝飾器函數,即wrappering函數是可以使用log的傳入參數的。
裝飾器處理過程與下面是等價的:

normalize = log('run')(normalize)
參考文獻

[1]. David Beazley, Brian K. Jones. Python Cookbook 3rd Edition
[2]. Wesley Chun. Core Python Applications Programming 2nd Edition

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,546評論 6 533
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,570評論 3 418
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,505評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,017評論 1 313
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,786評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,219評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,287評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,438評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,971評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,796評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,995評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,540評論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,230評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,662評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,918評論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,697評論 3 392
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,991評論 2 374

推薦閱讀更多精彩內容