題目:
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
思路:
這個題首先想到的是與合并兩個有序鏈表一樣,維護k個指針分別指向那k個鏈表,每次從中選出一個最小的加入到已有序鏈表尾,然后那個指針后移。這種做法的時間復雜度為o(nk),提交之后,結果超時。然后想到當某個指針為空時,便不再需要保存這個指針,修改代碼為動態刪除空指針也超時,因為本質上時間復雜度還是o(nk)。合并k個鏈表其實可以分解為分別合并前一半和后一半,然后再將這兩個結果合并,也就是分治的思想。采用分治的話,層次為log(n),每次合并都為o(n),所以最后的時間復雜度為o(nlog(n))。
代碼:
# Definition for singly-linked list.
# class ListNode(object):
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution(object):
def mergeTwo(self, l1, l2):
head = ListNode(None)
p = head
while l1!=None and l2!=None:
p.next = l1
if l1.val < l2.val:
p = p.next
l1 = l1.next
else:
p.next = l2
p = p.next
l2 = l2.next
if l1 != None:
p.next = l1
if l2 != None:
p.next = l2
return head.next
def mergeKLists(self, lists):
"""
:type lists: List[ListNode]
:rtype: ListNode
"""
if lists==None or len(lists)==0:
return None
if len(lists) == 1:
return lists[0]
l = self.mergeKLists(lists[0:len(lists)/2])
r = self.mergeKLists(lists[len(lists)/2:])
return self.mergeTwo(l,r)