PairRDD中算子combineByKey圖解

1、combineByKey

作用: 將RDD[(K,V)] => RDD[(K,C)] 表示V的類型可以轉成C兩者可以不同類型。

def combineByKey[C](createCombiner:V =>C ,mergeValue:(C,V) =>C, mergeCombiners:(C,C) =>C):RDD[(K,C)]

def combineByKey[C](createCombiner:V =>C ,mergeValue:(C,V) =>C, mergeCombiners:(C,C) =>C,numPartitions:Int ):RDD[(K,C)]

def combineByKey[C](createCombiner:V =>C ,mergeValue:(C,V) =>C, mergeCombiners:(C,C) =>C,partitioner:Partitioner,mapSideCombine:Boolean=true,serializer:Serializer= null):RDD[(K,C)]

第一個函數和第二個函數默認使用的是HashPartitioner、serialize為null。

說明:

1)createCombiner:在遍歷RDD的數據集合過程中,對于遍歷到的(k,v),如果combineByKey第一次遇到值為k的Key(類型K),那么將對這個(k,v)調用 createCombiner函數,它的作用是將v轉換為c(類型是C,聚合對象的類型,c作為局和對象的初始值)。

2)mergeValue: ? ?在遍歷RDD的數據集合過程中,對于遍歷到的(k,v),如果combineByKey不是第一次(或者第二次,第三次…)遇到值為k的Key(類型K),那么將對這個 (k,v)調用mergeValue函數,它的作用是將v累加到聚合對象(類型C)中,mergeValue的類型是(C,V)=>C,參數中的C遍歷到此處的聚合對象,然后對v 進行聚合得到新的聚合對象值。

3)mergeCombiners:因為combineByKey是在分布式環境下執行,RDD的每個分區單獨進行combineByKey操作,最后需要對各個分區的結果進行最后的聚合,它的函數類型是(C,C)=>C,每個參數是分區聚合得到的聚合對象

例子:

scala> val data = sc.parallelize(List(("1","3"),("1","2"),("1","5"),("2","3")))

scala> val natPairRdd = data.combineByKey(List(_), (c: List[String], v: String) => v::c, (c1: List[String], c2: List[String]) => c1 ::: c2)

scala> natPairRdd.collect

res0: Array[(String, List[String])] = Array((1,List(3, 2, 5)), (2,List(3)))

執行的邏輯示意圖:


by 明翼
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,001評論 6 537
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,786評論 3 423
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,986評論 0 381
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,204評論 1 315
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,964評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,354評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,410評論 3 444
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,554評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,106評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,918評論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,093評論 1 371
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,648評論 5 362
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,342評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,755評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,009評論 1 289
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,839評論 3 395
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,107評論 2 375

推薦閱讀更多精彩內容