1 問題描述
當使用Spark-sql執行 Hive UDF時會發生NullPointerException(NPE),從而導致作業異常終止。NPE具體堆棧信息如下:
Serialization trace:
fields (com.xiaoju.dataservice.api.hive.udf.LoadFromDataServiceMetricSetUDTF)
at com.esotericsoftware.kryo.serializers.ObjectField.read(ObjectField.java:144)
at com.esotericsoftware.kryo.serializers.FieldSerializer.read(FieldSerializer.java:551)
at com.esotericsoftware.kryo.Kryo.readObject(Kryo.java:686)
at org.apache.spark.sql.hive.HiveShim$HiveFunctionWrapper.deserializeObjectByKryo(HiveShim.scala:155)
at org.apache.spark.sql.hive.HiveShim$HiveFunctionWrapper.deserializePlan(HiveShim.scala:171)
at org.apache.spark.sql.hive.HiveShim$HiveFunctionWrapper.readExternal(HiveShim.scala:210)
at java.io.ObjectInputStream.readExternalData(ObjectInputStream.java:1842)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1799)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371)
at scala.collection.immutable.List$SerializationProxy.readObject(List.scala:479)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1058)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1900)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:114)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:80)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.NullPointerException
at java.util.ArrayList.ensureExplicitCapacity(ArrayList.java:234)
at java.util.ArrayList.ensureCapacity(ArrayList.java:218)
at com.esotericsoftware.kryo.serializers.CollectionSerializer.read(CollectionSerializer.java:114)
at com.esotericsoftware.kryo.serializers.CollectionSerializer.read(CollectionSerializer.java:40)
at com.esotericsoftware.kryo.Kryo.readObject(Kryo.java:708)
at com.esotericsoftware.kryo.serializers.ObjectField.read(ObjectField.java:125)
2 問題分析
2.1 NPE直接原因分析
從上述堆棧信息可知,NPE發生在Kryo反序列化ArrayList對象時。
Kryo是一個快速高效的序列化框架,它不強制使用某種模式或具有特殊操作特點的數據,所有的規范都交由Serializers自己來處理。不同的數據類型采用的Serializers進行處理,同時也允許用戶自定義Serializers來處理數據。而針對ArrayList類型的集合類型的數據,Kryo默認提供了CollectionSerializer.
at java.util.ArrayList.ensureExplicitCapacity(ArrayList.java:234)
at java.util.ArrayList.ensureCapacity(ArrayList.java:218)
at com.esotericsoftware.kryo.serializers.CollectionSerializer.read(CollectionSerializer.java:114)
結合上述堆棧信息,通過源碼調試,我們發現CollectionSerializer#read中會反序列化生成ArrayList對象,在調用ensureCapacity設置ArrayList容量時發生NPE異常. 通過試信息發現生成的ArrayList中elementData屬性未初始化,調試信息如下:
而通過查看ArrayList的各個構造函數,均對ArrayList@elementData進行了初始化。為什么調試結果顯示elementData為NULL呢,除非創建對象時未調用任何構造函數,于是問題的分析方向轉移到了ArrayList的創建方式上。
/**
* Constructs an empty list with an initial capacity of ten.
*/
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
//其它構造函數也均對elementData進行了初始化
2.2 ArrayList對象的創建方式
上文提到,創建的ArrayList對象的elementData屬性為NULL,而ArrayList的各個構造方法中都對elementData進行了初始化,出現此結果的原因可能是由于創建對象時未使用任何構造方法。帶著此假設,再次對程序進行調試。
//創建ArrayList對象的方法
/** Creates a new instance of a class using {@link Registration#getInstantiator()}. If the registration's instantiator is null,
* a new one is set using {@link #newInstantiator(Class)}. */
public <T> T newInstance (Class<T> type) {
Registration registration = getRegistration(type);
ObjectInstantiator instantiator = registration.getInstantiator();
if (instantiator == null) {
instantiator = newInstantiator(type);
registration.setInstantiator(instantiator);
}
return (T)instantiator.newInstance();
ArrayList對象由Kryo#newInstance方法進行實例化,而具體采用的實例化器(創建對象采用的構造器),類型向Kryo注冊Registration時指定的實例器,若注冊時未指定,則會依據Class Type按設置的InstantiatorStrategy創建實例化器。實現如下:
/** Returns a new instantiator for creating new instances of the specified type. By default, an instantiator is returned that
* uses reflection if the class has a zero argument constructor, an exception is thrown. If a
* {@link #setInstantiatorStrategy(InstantiatorStrategy) strategy} is set, it will be used instead of throwing an exception. */
protected ObjectInstantiator newInstantiator (final Class type) {
// InstantiatorStrategy.
return strategy.newInstantiatorOf(type);
}
SparkSql在序列化及反序列化Hive UDF時默認采用的Kryo實例由Hive代碼定義的,其采用的實例化器策略為StdInstantiatorStrategy(若注冊的Registration未設置instantiator,則使用該策略創建instantiator),具體實現如下:
// Kryo is not thread-safe,
// Also new Kryo() is expensive, so we want to do it just once.
public static ThreadLocal<Kryo> runtimeSerializationKryo = new ThreadLocal<Kryo>() {
@Override
protected synchronized Kryo initialValue() {
Kryo kryo = new Kryo();
kryo.setClassLoader(Thread.currentThread().getContextClassLoader());
kryo.register(java.sql.Date.class, new SqlDateSerializer());
kryo.register(java.sql.Timestamp.class, new TimestampSerializer());
kryo.register(Path.class, new PathSerializer());
kryo.setInstantiatorStrategy(new StdInstantiatorStrategy());
......
return kryo;
};
};
而StdInstantiatorStrategy在創建對象時是依據JVM version信息及JVM vendor信息進行的,而不是依據Class的具體實現,
其可以不調用對象的任何構造方法創建對象。
// StdInstantiatorStrategy的描述信息
/**
* Guess the best instantiator for a given class. The instantiator will instantiate the class
* without calling any constructor. Currently, the selection doesn't depend on the class. It relies
* on the
* <ul>
* <li>JVM version</li>
* <li>JVM vendor</li>
* <li>JVM vendor version</li>
* </ul>
* However, instantiators are stateful and so dedicated to their class.
*
* @author Henri Tremblay
* @see ObjectInstantiator
*/
public class StdInstantiatorStrategy extends BaseInstantiatorStrategy {
而我們發現Kryo在注冊各類型Class的Registration對象時都未顯式設置instantiator,因此都會采用StdInstantiatorStrategy策略構造對象。
至此,我們的假設成立,NPE的原因是由于生成ArrayList對象時未調用任何構造方法,從而使其elementData屬性未初始化所致。
3 部分Spark版本可以正常執行的原因
同樣的用戶程序,在公司較早期的Spark中可以正常執行,而在最新提供的Spark版本中會出現上述Bug,為什么會出現這樣的問題呢,我們的第一反應是可能Kryo的版本不同,通過查看IDE的External Libraries 觀查到老版本Spark采用的是Kryo 2, 而最新版本中依賴的是Kryo 3。
通過分析兩個版本的Kryo代碼實現,并沒有發現對ArrayList的操作行為有何不同。于是重新進行排查,因問題發生于Hive UDF的反序列化過程,因此排查了兩個版本Spark 依賴的Hive版本信息。
公司老版本Spark依賴的Hive信息(Spark官方的依賴版本,即:閹割版):
<hive.group>org.spark-project.hive</hive.group>
<!-- Version used in Maven Hive dependency -->
<hive.version>1.2.1.spark</hive.version>
公司新版本Spark依賴的Hive信息(本質為社區版Hive):
<hive.group>com.my corporation.hive</hive.group>
<!-- Version used in Maven Hive dependency -->
<hive.version>1.2.1-200-spark</hive.version>
顯然,公司使用的新老版本的Spark依賴的Hive是不同的。通過調研發現Spark社區版的Hive依賴“org.spark-project.hive” 系在原版Hive基礎上修改過的獨立的工程,其中存在自己定義的Kryo的組件(即對Hive社區版進行了閹割,并自己實現了Kryo)。 而公司新版Spark中依賴的Hive是社區版Hive, Hive中使用的Kryo組件為第三方依賴(Kryo官方版,并通過maven-shade-plugin的relocation將包路徑重定義到了hive-exec中)。
通過對比分析發現:
公司老版本依賴的Hive(即Spark社區版中依賴的Hive)中對Kryo的newInstantiator方法進行了改造,其并未設置實例化器策略(InstantiatorStrategy),而是直接通過獲取Class的默認構造函數來創建對象,即其創建的對象是被實例化的。因此,創建ArrayList時,elementData屬性可以被初始化。
對該問題存在影響的不同實現:
- 公司老版本Spark依賴Hive(即社區版Spark中閹割的Hive)中使用的Kryo
protected ObjectInstantiator newInstantiator(final Class type) {
if (!Util.isAndroid) {
Class enclosingType = type.getEnclosingClass();
boolean isNonStaticMemberClass = enclosingType != null && type.isMemberClass() && !Modifier.isStatic(type.getModifiers());
if (!isNonStaticMemberClass) {
try {
// 獲取無參構造方法
final ConstructorAccess access = ConstructorAccess.get(type);
return new ObjectInstantiator() {
public Object newInstance() {
try {
return access.newInstance();
} catch (Exception var2) {
throw new KryoException("Error constructing instance of class: " + Util.className(type), var2);
}
}
};
} catch (Exception var7) {
;
}
}
}
......
}
- 公司新版本Spark依賴的Hive(實為社區版Hive)中使用的Kryo,是依據InstantiatorStrategy選取不同的策略進行創建對象,在本文2.2節已進行描述,不再贅述。
/** Returns a new instantiator for creating new instances of the specified type. By default, an instantiator is returned that
* uses reflection if the class has a zero argument constructor, an exception is thrown. If a
* {@link #setInstantiatorStrategy(InstantiatorStrategy) strategy} is set, it will be used instead of throwing an exception. */
protected ObjectInstantiator newInstantiator (final Class type) {
// InstantiatorStrategy.
return strategy.newInstantiatorOf(type);
}
4 解決方案
經過以上分析,可知NPE的主要原因是由于Spark調用了Hive中設置了StdInstantiatorStrategy的Kryo對象對ArrayList對象反序列化時未調用其任何構造函數,從而使用創建的對象未實例化所致。
因此,可以在Spark、Hive、Kryo三者中任一中修復。目前,該問題只在Spark引擎中出現,故選擇在Spark中進行修復。主要思想是首先使用默認無參構造策略DefaultInstantiatorStrategy,若創建對象失敗則采用StdInstantiatorStrategy
@transient
def deserializeObjectByKryo[T: ClassTag](
kryo: Kryo,
in: InputStream,
clazz: Class[_]): T = {
val inp = new Input(in)
// 顯式設置instantiator
kryo.setInstantiatorStrategy(new Kryo.DefaultInstantiatorStrategy(new StdInstantiatorStrategy))
val t: T = kryo.readObject(inp, clazz).asInstanceOf[T]
inp.close()
t
}