numpy之統計函數和布爾數組方法

統計函數

可以通過numpy的統計函數對整個數組或者某個軸向的數據進項統計計算。

所謂的軸向,其實就是n維向量的某一維?;蛘哒f某一行,某一列。

sum對數組(向量)中全部或某個軸向的元素求和,長度為0,則sum為0.
mean算數平均數,作用范圍同sum,長度為0,結果為NaN。


In [1]: import numpy as np

In [2]: x = np.arange(9).reshape(3,3)#二維

In [3]: x
Out[3]:
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])

In [4]: x.sum()
Out[4]: 36

In [5]: np.sum(x[0])
Out[5]: 3

In [6]: np.sum(x[:,0])
Out[6]: 9

In [7]: x.mean()
Out[7]: 4.0

In [8]: np.mean(x[0])
Out[8]: 1.0

In [9]: np.mean(x[:,1])
Out[9]: 4.0

In [10]: y = np.arange(18).reshape(2,3,3)#三維                         
                                                                
In [11]: y                                                        
Out[11]:                                                          
array([[[ 0,  1,  2],                                             
        [ 3,  4,  5],                                             
        [ 6,  7,  8]],                                            
                                                                  
       [[ 9, 10, 11],                                             
        [12, 13, 14],                                             
        [15, 16, 17]]])                                           
                                                                  
In [12]: np.sum(y)                                                
Out[12]: 153                                                      
                                                                  
In [13]: np.mean(y)                                               
Out[13]: 8.5                                                      
                                                                  
In [14]: np.sum(y[0])                                             
Out[14]: 36                                                       
                                                                  
In [15]: np.sum(y[:,0])                                           
Out[15]: 33                                                       
                                                                  

可以發現,sum,mean不但能作為數組的實例方法調用,還可以作為Numpy函數調用。

另外,numpymean,sum函數還可以接受一個axis參數,用于計算該軸向的參數值,咳咳,敲黑板,重點來了,什么軸向?


In [21]: x  #2維
Out[21]:
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])

In [22]: x.sum(axis=0)
Out[22]: array([ 9, 12, 15])

In [23]: x.sum(axis=1)
Out[23]: array([ 3, 12, 21])
In [24]: y  #3維                              
Out[24]:                                
array([[[ 0,  1,  2],                   
        [ 3,  4,  5],                   
        [ 6,  7,  8]],                  
                                        
       [[ 9, 10, 11],                   
        [12, 13, 14],                   
        [15, 16, 17]]])                 
                                        
In [25]: y.sum(axis=0)                  
Out[25]:                                
array([[ 9, 11, 13],                    
       [15, 17, 19],                    
       [21, 23, 25]])                   
                                        
In [26]: y.sum(axis=1)                  
Out[26]:                                
array([[ 9, 12, 15],                    
       [36, 39, 42]])                   
                                        
In [27]: y.sum(axis=2)                  
Out[27]:                                
array([[ 3, 12, 21],                    
       [30, 39, 48]])                   
                                        
In [28]: y.sum(axis=3) 
ValueError: 'axis' entry is out of bounds    

經過試驗,可以發現,

沒有axis參數表示全部相加,axis=0表示按列相加,axis=1表示按照行的方向相加。 axis = 2,也是行相加,不過代表的是2維程度的相加。

另外,輸入axis = 3,返回了錯誤,這說明,axis參數的維度總是比數組低一層。

另外,axis還可以接受一個元組。

In [30]: x.sum(axis=(0,1))
Out[30]: 36

In [30]: x.sum(axis=(0,1))
Out[30]: 36

In [31]: y.sum(axis=(0,1))
Out[31]: array([45, 51, 57])

In [32]: y.sum(axis=(0,1,2))
Out[32]: 153

In [33]: y.sum(axis=(1,2,0))
Out[33]: 153

可以發現,輸入元組,實現了行和列的先后相加,拿x來說,

axis=(0,1)代表了先進行列相加,再將列相加的結果進行行相加,

所以最后的結果和全部求和的結果是一致的。

而且,結果與其順序是沒有關系的。

std、var 分別為標準差和方差,自由度是可以進行調整的(默認為n)
min、max 最小值最大值
argmin、argmax 最小值,最大值索引
cumsum 所有元素的累計和
cumprod 所有元素的累計積

以上這些函數,也可以接受參數axis,并且用法和上方的mean,sum基本一致。

但是argmin、argmax、cumsum、cumprod不接受元組。

自由度這一點有待進一步確定。

結合布爾型數組

以上這些方法還可以結合布爾型數組來使用。因為,在這些方法中,布爾值會被強制轉換為0和1。

因此,sum可以對向量中的True值進行計數。如:


In [39]: k = np.random.randn(50)

In [40]: np.sum(k > 0)
Out[40]: 27

除此外,對于布爾型數組,還有兩個特別有用的方法:any,all。

any用于測試數組(向量)中是否存在True。
all用于確定數組中是否全是True。


In [41]: arr = np.random.randn(10)

In [42]: arr
Out[42]:
array([-0.77695399, -1.04211228,  0.85516427, -0.04749936, -1.32314252,
       -0.59968117,  1.93582735,  0.08567928, -1.10820476,  1.2410364 ])

In [43]: arr1 = arr>0

In [44]: arr1
Out[44]: array([False, False,  True, False, False, False,  True,  True, False,  True], dtype=bool)

In [45]: arr1.any()
Out[45]: True

In [46]: arr1.all()
Out[46]: False

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,237評論 6 537
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,957評論 3 423
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 177,248評論 0 382
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,356評論 1 316
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,081評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,485評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,534評論 3 444
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,720評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,263評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,025評論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,204評論 1 371
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,787評論 5 362
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,461評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,874評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,105評論 1 289
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,945評論 3 395
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,205評論 2 375

推薦閱讀更多精彩內容