機器學習中的三種梯度下降法

姓名:尤學強? 學號:17101223374

轉載自:http://mp.weixin.qq.com/s/DbAagAvzwy8iNYzeA1A8RA

【嵌牛導讀】:采用梯度下降法來對采用的算法進行訓練

【嵌牛鼻子】:函數,算法

【嵌牛提問】:怎樣才是最優算法?

【嵌牛正文】:

在應用機器學習算法時,我們通常采用梯度下降法來對采用的算法進行訓練。其實,常用的梯度下降法還具體包含有三種不同的形式,它們也各自有著不同的優缺點。

下面我們以線性回歸算法來對三種梯度下降法進行比較。

一般線性回歸函數的假設函數為:

對應的損失函數為:

(這里的1/2是為了后面求導計算方便)

下圖作為一個二維參數(theta0,theta1)組對應能量函數的可視化圖:

下面我們來分別講解三種梯度下降法

1

批量梯度下降法BGD

我們的目的是要誤差函數盡可能的小,即求解weights使誤差函數盡可能小。首先,我們隨機初始化weigths,然后不斷反復的更新weights使得誤差函數減小直到滿足要求時停止。這里更新算法我們選擇梯度下降算法,利用初始化的weights并且反復更新weights:

這里代表學習率,表示每次向著J最陡峭的方向邁步的大小。為了更新weights,我們需要求出函數J的偏導數。首先當我們只有一個數據點(x,y)的時候,J的偏導數是:

則對所有數據點上述損失函數的偏導(累和)為:

再最小化損失函數的過程中,需要不斷反復的更新weights使得誤差函數減小,更新過程如下:

那么好了,每次參數更新的偽代碼如下:

由上圖更新公式我們就可以看到,我們每一次的參數更新都用到了所有的訓練數據(比如有m個,就用到了m個),如果訓練數據非常多的話,是非常耗時的

下面給出批梯度下降的收斂圖:

從圖中,我們可以得到BGD迭代的次數相對較少。

2

隨機梯度下降法SGD

由于批梯度下降每跟新一個參數的時候,要用到所有的樣本數,所以訓練速度會隨著樣本數量的增加而變得非常緩慢。隨機梯度下降正是為了解決這個辦法而提出的。它是利用每個樣本的損失函數對θ求偏導得到對應的梯度,來更新θ:

更新過程如下:

隨機梯度下降是通過每個樣本來迭代更新一次,對比上面的批量梯度下降,迭代一次需要用到所有訓練樣本(往往如今真實問題訓練數據都是非常巨大),一次迭代不可能最優,如果迭代10次的話就需要遍歷訓練樣本10次。

但是,SGD伴隨的一個問題是噪音較BGD要多,使得SGD并不是每次迭代都向著整體最優化方向。

隨機梯度下降收斂圖如下:

我們可以從圖中看出SGD迭代的次數較多,在解空間的搜索過程看起來很盲目。但是大體上是往著最優值方向移動。

3

min-batch 小批量梯度下降法MBGD

我們從上面兩種梯度下降法可以看出,其各自均有優缺點,那么能不能在兩種方法的性能之間取得一個折衷呢?算法的訓練過程比較快,而且也要保證最終參數訓練的準確率而這正是小批量梯度下降法(Mini-batch Gradient Descent,簡稱MBGD)的初衷。

我們假設每次更新參數的時候用到的樣本數為10個(不同的任務完全不同,這里舉一個例子而已

更新偽代碼如下:

4

實例以及代碼詳解

這里參考他人博客,創建了一個數據,如下圖所示:

待訓練數據A、B為自變量,C為因變量。

?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,247評論 6 543
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,520評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,362評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,805評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,541評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,896評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,887評論 3 447
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,062評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,608評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,356評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,555評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,077評論 5 364
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,769評論 3 349
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,175評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,489評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,289評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,516評論 2 379

推薦閱讀更多精彩內容