OpenCV + Python 人臉檢測

下午的時候,配好了OpenCV的Python環境,OpenCV的Python環境搭建。于是迫不及待的想體驗一下opencv的人臉識別,如下文。


必備知識

Haar-like

Haar-like百科釋義。通俗的來講,就是作為人臉特征即可。

Haar特征值反映了圖像的灰度變化情況。例如:臉部的一些特征能由矩形特征簡單的描述,如:眼睛要比臉頰顏色要深,鼻梁兩側比鼻梁顏色要深,嘴巴比周圍顏色要深等。

opencv api

要想使用opencv,就必須先知道其能干什么,怎么做。于是API的重要性便體現出來了。就本例而言,使用到的函數很少,也就普通的讀取圖片,灰度轉換,顯示圖像,簡單的編輯圖像罷了。

如下:

讀取圖片

只需要給出待操作的圖片的路徑即可。

import cv2
image = cv2.imread(imagepath)

灰度轉換

灰度轉換的作用就是:轉換成灰度的圖片的計算強度得以降低。

import cv2
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

畫圖

opencv 的強大之處的一個體現就是其可以對圖片進行任意編輯,處理。
下面的這個函數最后一個參數指定的就是畫筆的大小。

import cv2
cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)

顯示圖像

編輯完的圖像要么直接的被顯示出來,要么就保存到物理的存儲介質。

import cv2
cv2.imshow("Image Title",image)

獲取人臉識別訓練數據

看似復雜,其實就是對于人臉特征的一些描述,這樣opencv在讀取完數據后很據訓練中的樣品數據,就可以感知讀取到的圖片上的特征,進而對圖片進行人臉識別。

import cv2

face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')

里賣弄的這個xml文件,就是opencv在GitHub上共享出來的具有普適的訓練好的數據。我們可以直接的拿來使用。

訓練數據 參考地址

探測人臉

說白了,就是根據訓練的數據來對新圖片進行識別的過程。

import cv2

# ···

# 探測圖片中的人臉
faces = face_cascade.detectMultiScale(
    gray,
    scaleFactor = 1.15,
    minNeighbors = 5,
    minSize = (5,5),
    flags = cv2.cv.CV_HAAR_SCALE_IMAGE
)

我們可以隨意的指定里面參數的值,來達到不同精度下的識別。返回值就是opencv對圖片的探測結果的體現。

處理人臉探測的結果

結束了剛才的人臉探測,我們就可以拿到返回值來做進一步的處理了。但這也不是說會多么的復雜,無非添加點特征值罷了。

import cv2

# ···
print "發現{0}個人臉!".format(len(faces))

for(x,y,w,h) in faces:
    cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)

實例

有了剛才的基礎,我們就可以完成一個簡單的人臉識別的小例子了。

圖片素材

下面的這張圖片將作為我們的檢測依據。


圖片素材

人臉檢測代碼

# coding:utf-8
import sys

reload(sys)
sys.setdefaultencoding('utf8')
#    __author__ = '郭 璞'
#    __date__ = '2016/9/5'
#    __Desc__ = 人臉檢測小例子,以圓圈圈出人臉
import cv2
# 待檢測的圖片路徑
imagepath = r'./heat.jpg'

# 獲取訓練好的人臉的參數數據,這里直接從GitHub上使用默認值
face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')

# 讀取圖片
image = cv2.imread(imagepath)
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

# 探測圖片中的人臉
faces = face_cascade.detectMultiScale(
    gray,
    scaleFactor = 1.15,
    minNeighbors = 5,
    minSize = (5,5),
    flags = cv2.cv.CV_HAAR_SCALE_IMAGE
)

print "發現{0}個人臉!".format(len(faces))

for(x,y,w,h) in faces:
    # cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)
    cv2.circle(image,((x+x+w)/2,(y+y+h)/2),w/2,(0,255,0),2)

cv2.imshow("Find Faces!",image)
cv2.waitKey(0)

人臉檢測結果

  • 輸出圖片:


    人臉檢測結果
  • 輸出結果:

D:\Software\Python2\python.exe E:/Code/Python/DataStructor/opencv/Demo.py
發現3個人臉!

詳情見 案例參考

總結

回顧一下,這次的實驗就是簡單的對opencv的常用的api的使用,重點在于訓練數據的使用和人臉探測的處理。

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,321評論 6 543
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,559評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事?!?“怎么了?”我有些...
    開封第一講書人閱讀 178,442評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,835評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,581評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,922評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,931評論 3 447
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,096評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,639評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,374評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,591評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,104評論 5 364
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,789評論 3 349
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,196評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,524評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,322評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,554評論 2 379

推薦閱讀更多精彩內容