6. Random Forest 隨機森林

Random forests,又叫random decision forests,它是一個包含多個決策樹的分類器,并且其輸出的類別是由個別樹輸出的類別的眾數而定。

上世紀八十年代Breiman等人發明分類樹的算法(Breiman et al. 1984),通過反復二分數據進行分類或回歸,計算量大大降低。2001年Breiman把分類樹組合成隨機森林(Breiman 2001a),即在變量(列)的使用和數據(行)的使用上進行隨機化,生成很多分類樹,再匯總分類樹的結果。

1. 算法:

它根據下列算法而建造每棵樹,具有雙重隨機:

-用N來表示訓練用例(樣本)的個數,M表示特征數目。

-輸入特征數目m,用于確定決策樹上一個節點的決策結果;其中m應遠小于M。

-從N個訓練用例(樣本)中以有放回抽樣的方式,取樣N次,形成一個訓練集(即bootstrap取樣),并用未抽到的用例(樣本)作預測,評估其誤差。

-對于每一個節點,隨機選擇m個特征,決策樹上每個節點的決定都是基于這些特征確定的。根據這m個特征,計算其最佳的分裂方式。

-每棵樹都會完整成長而不會剪枝(Pruning,這有可能在建完一棵正常樹狀分類器后會被采用)。

2. 隨機森林的優點:

a. 在數據集上表現良好,兩個隨機性的引入,使得隨機森林不容易陷入過擬合

b. 在當前的很多數據集上,相對其他算法有著很大的優勢,兩個隨機性的引入,使得隨機森林具有很好的抗噪聲能力

c. 它能夠處理很高維度(feature很多)的數據,并且不用做特征選擇,對數據集的適應能力強:既能處理離散型數據,也能處理連續型數據,數據集無需規范化

d. 可生成一個Proximities=(pij)矩陣,用于度量樣本之間的相似性: pij=aij/N, aij表示樣本i和j出現在隨機森林中同一個葉子結點的次數,N隨機森林中樹的顆數

e. 在創建隨機森林的時候,對generlization error使用的是無偏估計

f. 訓練速度快,可以得到變量重要性排序(兩種:基于OOB誤分率的增加量和基于分裂時的GINI下降量

g. 在訓練過程中,能夠檢測到feature間的互相影響

h. 容易做成并行化方法

i. 實現比較簡單

參考來源:

1. http://www.zilhua.com/629.html

2. https://en.wikipedia.org/wiki/Random_forest

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,002評論 6 542
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,400評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,136評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,714評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,452評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,818評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,812評論 3 446
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,997評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,552評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,292評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,510評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,035評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,721評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,121評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,429評論 1 294
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,235評論 3 398
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,480評論 2 379

推薦閱讀更多精彩內容