【Python載入數(shù)據(jù)】用scipy.io通過mat文件在Python和Matlab/Octave之間進行數(shù)據(jù)交換

用scipy.io通過mat文件在Python和Matlab/Octave之間進行數(shù)據(jù)交換

點擊打開鏈接

http://docs.scipy.org/doc/scipy/reference/tutorial/io.html

如果更喜歡用python或Octave/Matlab,但又想兼而有之, 可以考慮

File IO (scipy.io)

See also

numpy-reference.routines.io(in numpy)

MATLAB files

loadmat(file_name[,?mdict,?appendmat])Load MATLAB file

savemat(file_name,?mdict[,?appendmat,?...])Save a dictionary of names and arrays into a MATLAB-style .mat file.

whosmat(file_name[,?appendmat])List variables inside a MATLAB file

The basic functions

We’ll start by importingscipy.ioand calling itsiofor convenience:

>>>

>>>importscipy.ioassio

If you are using IPython, try tab completing onsio. Among the many options, you will find:

sio.loadmatsio.savematsio.whosmat

These are the high-level functions you will most likely use when working with MATLAB files. You’ll also find:

sio.matlab

This is the package from whichloadmat,savematandwhosmatare imported. Withinsio.matlab, you will find themiomodule This module contains the machinery thatloadmatandsavematuse. From time to time you may find yourself re-using this machinery.

How do I start?

You may have a.matfile that you want to read into Scipy. Or, you want to pass some variables from Scipy / Numpy into MATLAB.

To save us using a MATLAB license, let’s start inOctave. Octave has MATLAB-compatible save and load functions. Start Octave (octaveat the command line for me):

octave:1>a=1:12a=123456789101112octave:2>a=reshape(a,[134])a=ans(:,:,1)=123ans(:,:,2)=456ans(:,:,3)=789ans(:,:,4)=101112octave:3>save-6octave_a.mata% MATLAB 6 compatibleoctave:4>lsoctave_a.matoctave_a.mat

Now, to Python:

>>>

>>>mat_contents=sio.loadmat('octave_a.mat')>>>mat_contents{'a': array([[[? 1.,? 4.,? 7.,? 10.],[? 2.,? 5.,? 8.,? 11.],[? 3.,? 6.,? 9.,? 12.]]]),'__version__': '1.0','__header__': 'MATLAB 5.0 MAT-file, written byOctave 3.6.3, 2013-02-17 21:02:11 UTC','__globals__': []}>>>oct_a=mat_contents['a']>>>oct_aarray([[[? 1.,? 4.,? 7.,? 10.],[? 2.,? 5.,? 8.,? 11.],[? 3.,? 6.,? 9.,? 12.]]])>>>oct_a.shape(1, 3, 4)

Now let’s try the other way round:

>>>

>>>importnumpyasnp>>>vect=np.arange(10)>>>vect.shape(10,)>>>sio.savemat('np_vector.mat',{'vect':vect})

Then back to Octave:

octave:8>loadnp_vector.matoctave:9>vectvect=0123456789octave:10>size(vect)ans=110

If you want to inspect the contents of a MATLAB file without reading the data into memory, use thewhosmatcommand:

>>>

>>>sio.whosmat('octave_a.mat')[('a', (1, 3, 4), 'double')]

whosmatreturns a list of tuples, one for each array (or other object) in the file. Each tuple contains the name, shape and data type of the array.

MATLAB structs

MATLAB structs are a little bit like Python dicts, except the field names must be strings. Any MATLAB object can be a value of a field. As for all objects in MATLAB, structs are in fact arrays of structs, where a single struct is an array of shape (1, 1).

octave:11>my_struct=struct('field1',1,'field2',2)my_struct={field1=1field2=2}octave:12>save-6octave_struct.matmy_struct

We can load this in Python:

>>>

>>>mat_contents=sio.loadmat('octave_struct.mat')>>>mat_contents{'my_struct': array([[([[1.0]], [[2.0]])]],dtype=[('field1', 'O'), ('field2', 'O')]), '__version__': '1.0', '__header__': 'MATLAB 5.0 MAT-file, written by Octave 3.6.3, 2013-02-17 21:23:14 UTC', '__globals__': []}>>>oct_struct=mat_contents['my_struct']>>>oct_struct.shape(1, 1)>>>val=oct_struct[0,0]>>>val([[1.0]], [[2.0]])>>>val['field1']array([[ 1.]])>>>val['field2']array([[ 2.]])>>>val.dtypedtype([('field1', 'O'), ('field2', 'O')])

In versions of Scipy from 0.12.0, MATLAB structs come back as numpy structured arrays, with fields named for the struct fields. You can see the field names in thedtypeoutput above. Note also:

>>>

>>>val=oct_struct[0,0]

and:

octave:13>size(my_struct)ans=11

So, in MATLAB, the struct array must be at least 2D, and we replicate that when we read into Scipy. If you want all length 1 dimensions squeezed out, try this:

>>>

>>>mat_contents=sio.loadmat('octave_struct.mat',squeeze_me=True)>>>oct_struct=mat_contents['my_struct']>>>oct_struct.shape()

Sometimes, it’s more convenient to load the MATLAB structs as python objects rather than numpy structured arrays - it can make the access syntax in python a bit more similar to that in MATLAB. In order to do this, use thestruct_as_record=Falseparameter setting toloadmat.

>>>

>>>mat_contents=sio.loadmat('octave_struct.mat',struct_as_record=False)>>>oct_struct=mat_contents['my_struct']>>>oct_struct[0,0].field1array([[ 1.]])

struct_as_record=Falseworks nicely withsqueeze_me:

>>>

>>>mat_contents=sio.loadmat('octave_struct.mat',struct_as_record=False,squeeze_me=True)>>>oct_struct=mat_contents['my_struct']>>>oct_struct.shape# but no - it's a scalarTraceback (most recent call last):File"", line1, inAttributeError:'mat_struct' object has no attribute 'shape'>>>type(oct_struct)>>>oct_struct.field11.0

Saving struct arrays can be done in various ways. One simple method is to use dicts:

>>>

>>>a_dict={'field1':0.5,'field2':'a string'}>>>sio.savemat('saved_struct.mat',{'a_dict':a_dict})

loaded as:

octave:21>loadsaved_structoctave:22>a_dicta_dict=scalarstructurecontainingthefields:field2=astringfield1=0.50000

You can also save structs back again to MATLAB (or Octave in our case) like this:

>>>

>>>dt=[('f1','f8'),('f2','S10')]>>>arr=np.zeros((2,),dtype=dt)>>>arrarray([(0.0, ''), (0.0, '')],dtype=[('f1', '>>arr[0]['f1']=0.5>>>arr[0]['f2']='python'>>>arr[1]['f1']=99>>>arr[1]['f2']='not perl'>>>sio.savemat('np_struct_arr.mat',{'arr':arr})

MATLAB cell arrays

Cell arrays in MATLAB are rather like python lists, in the sense that the elements in the arrays can contain any type of MATLAB object. In fact they are most similar to numpy object arrays, and that is how we load them into numpy.

octave:14>my_cells={1,[2,3]}my_cells={[1,1]=1[1,2]=23}octave:15>save-6octave_cells.matmy_cells

Back to Python:

>>>

>>>mat_contents=sio.loadmat('octave_cells.mat')>>>oct_cells=mat_contents['my_cells']>>>print(oct_cells.dtype)object>>>val=oct_cells[0,0]>>>valarray([[ 1.]])>>>print(val.dtype)float64

Saving to a MATLAB cell array just involves making a numpy object array:

>>>

>>>obj_arr=np.zeros((2,),dtype=np.object)>>>obj_arr[0]=1>>>obj_arr[1]='a string'>>>obj_arrarray([1, 'a string'], dtype=object)>>>sio.savemat('np_cells.mat',{'obj_arr':obj_arr})

octave:16>loadnp_cells.matoctave:17>obj_arrobj_arr={[1,1]=1[2,1]=astring}

IDL files

readsav(file_name[,?idict,?python_dict,?...])Read an IDL .sav file

Matrix Market files

mminfo(source)Queries the contents of the Matrix Market file ‘filename’ to extract size and storage information.

mmread(source)Reads the contents of a Matrix Market file ‘filename’ into a matrix.

mmwrite(target,?a[,?comment,?field,?precision])Writes the sparse or dense arrayato a Matrix Market formatted file.

Wav sound files (scipy.io.wavfile)

read(filename[,?mmap])Return the sample rate (in samples/sec) and data from a WAV file

write(filename,?rate,?data)Write a numpy array as a WAV file

Arff files (scipy.io.arff)

Module to read ARFF files, which are the standard data format for WEKA.

ARFF is a text file format which support numerical, string and data values. The format can also represent missing data and sparse data.

See theWEKA websitefor more details about arff format and available datasets.

Examples

>>>

>>>fromscipy.ioimportarff>>>fromcStringIOimportStringIO>>>content="""...@relation foo...@attribute width? numeric...@attribute height numeric...@attribute color? {red,green,blue,yellow,black}...@data...5.0,3.25,blue...4.5,3.75,green...3.0,4.00,red...""">>>f=StringIO(content)>>>data,meta=arff.loadarff(f)>>>dataarray([(5.0, 3.25, 'blue'), (4.5, 3.75, 'green'), (3.0, 4.0, 'red')],dtype=[('width', '>>metaDataset: foowidth's type is numericheight's type is numericcolor's type is nominal, range is ('red', 'green', 'blue', 'yellow', 'black')

loadarff(f)Read an arff file.

Netcdf (scipy.io.netcdf)

netcdf_file(filename[,?mode,?mmap,?version])A file object for NetCDF data.

Allows reading of NetCDF files (version ofpupynerepackage)

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,001評論 6 537
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,786評論 3 423
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,986評論 0 381
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,204評論 1 315
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,964評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,354評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,410評論 3 444
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,554評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 49,106評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 40,918評論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,093評論 1 371
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,648評論 5 362
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 44,342評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,755評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,009評論 1 289
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,839評論 3 395
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,107評論 2 375

推薦閱讀更多精彩內(nèi)容

  • !~~~終于開始了在Coursera上的第一個編程練習 。。。 下面就是這次作業(yè)的介紹了~: Introducti...
    東皇Amrzs閱讀 9,664評論 9 7
  • 當哈里遇上薩利 第一次見面他說她很迷人她說她討厭他 第二次見面他看見她在和他吻別她以為他認不出她 第三次見面他和她...
    沒有人陪你流浪閱讀 459評論 0 1
  • 說起愛情,讓我想起了茨威格的《一個陌生女人的來信》這本書。 還記得自己曾經(jīng)為書中女子悲慘的一生哭得死去活來,感...
    櫻花牧道閱讀 468評論 0 1
  • 我不知道某些文字是不是應該被陳述,我不知道有些悲傷該不該被表露。 奶奶昨天走了,腦子里一片空白,不知憂傷。 沒有地...
    蘑菇蘑菇u閱讀 232評論 0 0