在編寫編譯器時經(jīng)常需要實現(xiàn)對算術(shù)表達(dá)式的解析,然而對于計算機的算法來說如果直接求解算術(shù)表達(dá)式的值,還是相當(dāng)困難的。因此解析算術(shù)表達(dá)式經(jīng)常分步實現(xiàn):
1.將中綴的算術(shù)表達(dá)式轉(zhuǎn)換為后綴表達(dá)式
2.計算后綴表達(dá)式的值
在正式介紹算法的實現(xiàn)之前,先介紹一點有關(guān)表達(dá)式的基礎(chǔ)知識
基礎(chǔ)知識
1. 后綴表達(dá)式
日常算術(shù)表達(dá)式是將操作符(operator)(+,-,*,/)放在兩個操作數(shù)(operands)(數(shù)字,或者代表數(shù)字的字母)中間的,由于操作符寫在操作數(shù)中間,所以把這種寫法稱為中綴表達(dá)式.對人類而言,中綴表達(dá)式便于理解和閱讀.
后綴表達(dá)式,又稱為波蘭逆序表達(dá)式(Reverse Polish Notation),它是將操作符放在操作數(shù)后面的一種表達(dá)式的記錄方法,比如A+B
變成AB+
,這是一種便于計算機計算的表達(dá)式.
中綴表達(dá)式 | 后綴表達(dá)式 |
---|---|
A+B-C | AB+C- |
A*B/C | AB*C/ |
A+B*C | ABC*+ |
A+B*(C-D/(E+F)) | ABCDEF+/-*+ |
2. 棧
棧(Stack)是計算機中應(yīng)用的非常多的一種數(shù)據(jù)結(jié)構(gòu),其遵循先進后出的規(guī)律,可以用數(shù)組或者鏈表來實現(xiàn)棧,本文中就是使用數(shù)組實現(xiàn)一個簡單的棧.
中綴表達(dá)式轉(zhuǎn)換為后綴表達(dá)式
將中綴表達(dá)式轉(zhuǎn)換為后綴表達(dá)式是解析算術(shù)表達(dá)式中最重要的一步,本文中通過觀察幾個示例然后總結(jié)出轉(zhuǎn)換規(guī)律.
1. 分析
將中綴表達(dá)式轉(zhuǎn)換為后綴表達(dá)式的規(guī)則和計算中綴表達(dá)式值的規(guī)則相似,不需要做計算,只是把操作數(shù)和操作符重新排列為另一種形式:后綴表示法.
從左到右的掃描中綴表達(dá)式,遇到操作數(shù)直接輸出,遇到操作符則按照轉(zhuǎn)換規(guī)則入棧或者輸出.以將A*(B+C)的轉(zhuǎn)換為例:
讀取的字符 | 分解中綴表達(dá)式 | 求后綴表達(dá)式 | 棧中內(nèi)容 |
---|---|---|---|
A | A | A | |
+ | A+ | B | + |
B | A+B | AB | + |
* | A+B* | AB | +* |
( | A+B*( | AB | +*( |
C | A+B*(C | ABC | +*( |
- | A+B*(C- | ABC | +*(- |
D | A+B*(C-D | ABCD | +*(- |
) | A+B*(C-D) | ABCD- | +*( |
A+B*(C-D) | ABCD- | +*( | |
A+B*(C-D) | ABCD- | +* | |
A+B*(C-D | ABCD-* | + | |
A+B*(C-D) | ABCD-*+ |
從中可以看出,操作符的初始順序在中綴表達(dá)式中是+*-
,但是在后綴表達(dá)式中變成了-*+
,這是因為*
比+
的優(yōu)先級別高,而-
在括號中所以優(yōu)先級比*
高.
2. 規(guī)律總結(jié)
通過觀察上面的轉(zhuǎn)換例子,可以一般地總結(jié)出中綴表達(dá)式轉(zhuǎn)換為后綴表達(dá)式的轉(zhuǎn)換規(guī)則.
| 從輸入中讀取的字符 | 動作 |
| :----------------: | |
|操作數(shù) | 寫至輸出(postfix)|
|左括號 ( | 入棧 |
|右括號 ) | 棧非空時,重復(fù)以下步驟:彈出一項,若項不為(,則寫至輸出,項為(,則退出循環(huán)|
|Operator(opThis)| 若棧空, 推opThis;否則,棧非空時,重復(fù):彈出一項,若項為(,推其入棧;或項為operator(opTop),且,若opTop<opThis
,推入opTop,或opTop>=opThis
,輸出opTop,若opTop<opThis
,則退出循環(huán),或項為(,推入opThis|
|沒有更多項 |當(dāng)棧非空時,彈出項目,將其輸出|
3. 代碼實現(xiàn)
利用java實現(xiàn)以上轉(zhuǎn)換過程,關(guān)鍵如下:
/**
* 中綴表達(dá)式轉(zhuǎn)換為后綴表達(dá)式
*
* @return 轉(zhuǎn)換結(jié)果
*/
public String doTrans() {
for (int j = 0; j < input.length(); j++) {
char ch = input.charAt(j);
theStack.displayStack("For " + ch + " ");
switch (ch) {
case '+':
case '-':
gotOper(ch, 1);
break;
case '*':
case '/':
gotOper(ch, 2);
break;
case '(':
theStack.push(ch);
break;
case ')':
gotParen(ch);
break;
default:
output += ch;
break;
}
}
while (!theStack.isEmpty()) {
theStack.displayStack("While ");
output += theStack.pop();
}
theStack.displayStack("End ");
return output;
}
public void gotOper(char onThis, int prec1) {
while (!theStack.isEmpty()) {
char onTop = theStack.pop();
if (onTop == '(') {
theStack.push(onTop);
break;
} else {
int prec2;
if (onTop == '+' || onTop == '-') {
prec2 = 1;
} else {
prec2 = 2;
}
if (prec2 < prec1) {
theStack.push(onTop);
break;
} else {
output += onTop;
}
}
}
theStack.push(onThis);
}
public void gotParen(char ch) {
while (!theStack.isEmpty()) {
char chx = theStack.pop();
if (chx == '(') {
break;
} else {
output += chx;
}
}
}
計算后綴表達(dá)式
相對于轉(zhuǎn)換而言,計算后綴表達(dá)式是比較容易的.從左到右掃描輸入(后綴表達(dá)式),碰到操作數(shù)將之入棧,每碰到一個操作符,從棧中提出兩個操作數(shù),用操作符將其執(zhí)行運算,將計算結(jié)果入棧.
1. 代碼實現(xiàn)
/**
* 對后綴表達(dá)式求值
*
* @return 求值結(jié)果
*/
public int doParse() {
int num1, num2, interAns = 0;
char ch;
theStack = new StackY(20);
for (int j = 0; j < input.length(); j++) {
ch = input.charAt(j);
theStack.displayStack("" + ch + " ");
if (ch >= '0' && ch <= '9') {
theStack.push((ch - '0'));
} else {
num2 = theStack.pop();
num1 = theStack.pop();
switch (ch) {
case '+':
interAns = num1 + num2;
break;
case '-':
interAns = num1 - num2;
break;
case '*':
interAns = num1 * num2;
break;
case '/':
interAns = num1 / num2;
break;
default:
interAns = 0;
}
theStack.push(interAns);
}
}
interAns = theStack.pop();
return interAns;
}
括號匹配
在用戶輸入表達(dá)式的過程中,有時會出現(xiàn)左右括號不匹配的情況,對于這種情況,一個優(yōu)秀的算術(shù)解析器應(yīng)該能夠識別出來并報錯.這個實際上就是括號匹配的問題,也是利用棧來解決的,實現(xiàn)思路如下.
算法從左到右不斷掃描輸入的字符串,如果為左分隔符((、[、{),直接入棧;如果為右分隔符,彈出棧頂?shù)淖蠓指舴⑶也榭此欠窈陀曳指舴ヅ洹H绻鼈儾黄ヅ鋭t報錯.如果棧中沒有左分隔符和右分隔符匹配,或者一直存在著沒有被匹配的分隔符(棧非空),程序也報錯.
1. 代碼實現(xiàn)
public boolean check() {
int size = input.length();
StackY<Character> theStack = new StackY<>(size);
char ch, chx;
for (int j = 0; j < size; j++) {
ch = input.charAt(j);
switch (ch) {
case '(':
theStack.push(ch);
break;
case ')':
if (!theStack.isEmpty()) {
chx = theStack.pop();
if (chx != '(') return false;
} else
return false;
default:
break;
}
}
if (!theStack.isEmpty())
return false;
return true;
}
附錄
1. 說明
- 為了實現(xiàn)方便,本算法只針對一位數(shù)的計算有效,即
12*2
不能解析,3*9
可以解析 - 參考資料:Java數(shù)據(jù)結(jié)構(gòu)和算法(第二版)
2. 完整代碼
package com.lxl.stack;
import jdk.internal.org.objectweb.asm.signature.SignatureWriter;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
/**
* 利用棧解析算術(shù)表達(dá)式
*
* @author lixiaolin
* @createDate 2016-05-31 16:59
*/
public class InfixApp {
public static String getString() throws IOException {
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
return br.readLine();
}
public static void main(String[] args) throws IOException {
String input, output;
int result;
while (true) {
System.out.println("Enter infix: ");
System.out.flush();
input = getString();
if (input == "") {
break;
}
Bracket bracket =new Bracket(input);
if (!bracket.check()){
System.out.println("The input is invalid...");
break;
}
InToPost theTrans = new InToPost(input);
output = theTrans.doTrans();
System.out.println("Postfix is " + output);
ParsePost parsePost = new ParsePost(output);
result = parsePost.doParse();
System.out.println("Final result is : " + result);
}
}
}
/**
* 輔助棧
*
* @param <T>
*/
class StackY<T> {
private int maxSize;
private int top;
private Object[] stackArray;
public StackY(int maxSize) {
this.maxSize = maxSize;
this.top = -1;
stackArray = new Object[maxSize];
}
public void push(T value) {
stackArray[++top] = value;
}
public T peek() {
return (T) stackArray[top];
}
public T pop() {
return (T) stackArray[top--];
}
public boolean isEmpty() {
return top == -1;
}
public int size() {
return top + 1;
}
public T peekN(int n) {
return (T) stackArray[n];
}
public void displayStack(String s) {
System.out.print(s);
System.out.print("Stack (botton->top): ");
for (int i = 0; i < size(); i++) {
System.out.print(peekN(i));
System.out.print(" ");
}
System.out.println("");
}
}
class InToPost {
private String input;
private StackY<Character> theStack;
private String output = "";
public InToPost(String input) {
this.input = input;
theStack = new StackY(input.length());
}
/**
* 中綴表達(dá)式轉(zhuǎn)換為后綴表達(dá)式
*
* @return 轉(zhuǎn)換結(jié)果
*/
public String doTrans() {
for (int j = 0; j < input.length(); j++) {
char ch = input.charAt(j);
theStack.displayStack("For " + ch + " ");
switch (ch) {
case '+':
case '-':
gotOper(ch, 1);
break;
case '*':
case '/':
gotOper(ch, 2);
break;
case '(':
theStack.push(ch);
break;
case ')':
gotParen(ch);
break;
default:
output += ch;
break;
}
}
while (!theStack.isEmpty()) {
theStack.displayStack("While ");
output += theStack.pop();
}
theStack.displayStack("End ");
return output;
}
public void gotOper(char onThis, int prec1) {
while (!theStack.isEmpty()) {
char onTop = theStack.pop();
if (onTop == '(') {
theStack.push(onTop);
break;
} else {
int prec2;
if (onTop == '+' || onTop == '-') {
prec2 = 1;
} else {
prec2 = 2;
}
if (prec2 < prec1) {
theStack.push(onTop);
break;
} else {
output += onTop;
}
}
}
theStack.push(onThis);
}
public void gotParen(char ch) {
while (!theStack.isEmpty()) {
char chx = theStack.pop();
if (chx == '(') {
break;
} else {
output += chx;
}
}
}
}
class ParsePost {
private String input;
private StackY<Integer> theStack;
public ParsePost(String input) {
this.input = input;
}
/**
* 對后綴表達(dá)式求值
*
* @return 求值結(jié)果
*/
public int doParse() {
int num1, num2, interAns = 0;
char ch;
theStack = new StackY(20);
for (int j = 0; j < input.length(); j++) {
ch = input.charAt(j);
theStack.displayStack("" + ch + " ");
if (ch >= '0' && ch <= '9') {
theStack.push((ch - '0'));
} else {
num2 = theStack.pop();
num1 = theStack.pop();
switch (ch) {
case '+':
interAns = num1 + num2;
break;
case '-':
interAns = num1 - num2;
break;
case '*':
interAns = num1 * num2;
break;
case '/':
interAns = num1 / num2;
break;
default:
interAns = 0;
}
theStack.push(interAns);
}
}
interAns = theStack.pop();
return interAns;
}
}
class Bracket {
private String input;
public Bracket(String input) {
this.input = input;
}
public boolean check() {
int size = input.length();
StackY<Character> theStack = new StackY<>(size);
char ch, chx;
for (int j = 0; j < size; j++) {
ch = input.charAt(j);
switch (ch) {
case '(':
theStack.push(ch);
break;
case ')':
if (!theStack.isEmpty()) {
chx = theStack.pop();
if (chx != '(') return false;
} else
return false;
default:
break;
}
}
if (!theStack.isEmpty())
return false;
return true;
}
}