Read Caffe Programs2: layer_factory.cpp

上一次看了layer_factory.hpp中的內容,這一次關注一下.cpp中的內容,那么我們首先忽略python相關的文件,在整個caffe項目中似乎用到了很多boost項目中的內容來進行輔助工作,在構建python_layer的過程中也不例外,我估計這是一個warpper,所以我們先不要關注,假定現在不適用python來工作。

// Make sure we include Python.h before any system header
// to avoid _POSIX_C_SOURCE redefinition
#ifdef WITH_PYTHON_LAYER
#include <boost/python.hpp>
#endif
#include <string>

#include "caffe/layer.hpp"
#include "caffe/layer_factory.hpp"
#include "caffe/layers/conv_layer.hpp"
#include "caffe/layers/lrn_layer.hpp"
#include "caffe/layers/pooling_layer.hpp"
#include "caffe/layers/relu_layer.hpp"
#include "caffe/layers/sigmoid_layer.hpp"
#include "caffe/layers/softmax_layer.hpp"
#include "caffe/layers/tanh_layer.hpp"
#include "caffe/proto/caffe.pb.h"

#ifdef USE_CUDNN
#include "caffe/layers/cudnn_conv_layer.hpp"
#include "caffe/layers/cudnn_lcn_layer.hpp"
#include "caffe/layers/cudnn_lrn_layer.hpp"
#include "caffe/layers/cudnn_pooling_layer.hpp"
#include "caffe/layers/cudnn_relu_layer.hpp"
#include "caffe/layers/cudnn_sigmoid_layer.hpp"
#include "caffe/layers/cudnn_softmax_layer.hpp"
#include "caffe/layers/cudnn_tanh_layer.hpp"
#endif

#ifdef WITH_PYTHON_LAYER
#include "caffe/layers/python_layer.hpp"
#endif

從頭文件的包含中我們就可以看到,這里面將會注冊這么幾個層conv_layerlrn_layerpooling_layerrelu_layersigmoid_layersoftmax_layertanh_layer,如果開發者想要自己加入新的層,想要按照相關的規定來進行操作,具體接下來看,,其實我也搞不懂要進行怎樣的操作,,真是o(╯□╰)o。。。。


namespace caffe {

// Get convolution layer according to engine.
template <typename Dtype>
shared_ptr<Layer<Dtype> > GetConvolutionLayer(
    const LayerParameter& param) {
  ConvolutionParameter conv_param = param.convolution_param();
  ConvolutionParameter_Engine engine = conv_param.engine();
#ifdef USE_CUDNN
  bool use_dilation = false;
  for (int i = 0; i < conv_param.dilation_size(); ++i) {
    if (conv_param.dilation(i) > 1) {
      use_dilation = true;
    }   
  }
#endif
  if (engine == ConvolutionParameter_Engine_DEFAULT) {
    engine = ConvolutionParameter_Engine_CAFFE;
#ifdef USE_CUDNN
    if (!use_dilation) {
      engine = ConvolutionParameter_Engine_CUDNN;
    }   
#endif
}
  if (engine == ConvolutionParameter_Engine_CAFFE) {
    return shared_ptr<Layer<Dtype> >(new ConvolutionLayer<Dtype>(param));
#ifdef USE_CUDNN
  } else if (engine == ConvolutionParameter_Engine_CUDNN) {
    if (use_dilation) {
      LOG(FATAL) << "CuDNN doesn't support the dilated convolution at Layer "
                 << param.name();
    }
    return shared_ptr<Layer<Dtype> >(new CuDNNConvolutionLayer<Dtype>(param));
#endif
  } else {
    LOG(FATAL) << "Layer " << param.name() << " has unknown engine.";
  }
}

REGISTER_LAYER_CREATOR(Convolution, GetConvolutionLayer);

為什么這個Creator這么復雜呢,其實主要是這個版本的caffe加入了CUDNN所以呢在進行層的申請的時候需要考慮是否支持CUDNN特性,我們先不要考慮CUDNN這個特性,加入這個函數中不包含CUDNN特性,那么這個函數將會非常簡單,而不會包含這么多預編譯指令,其實只需要使用ConvolutionLayer這個原始的構造函數即可;當然這個里面有一個dilation參數,這個是CNN網絡中的一個參數選項,我還是沒搞明白為什么在!use_dilation時才能夠使用CUDNN引擎,蜜汁尷尬,,,,

然后你可以看到最后一個語句就是注冊了層的產生器,這個產生器Creator就是剛才定義的函數,在layer_factory.hpp頭文件中作者就提示過了,如果不是有multiple_backend需求,直接使用宏定義REGISTER_LAYER_CLASS(MyAwesome);即可完成任務,因為只要你的層的構造函數滿足要求即可;下面的所有的層Creator都是按照這個套路來進行操作的,注意看最后的說明,如果你的層是自己定義的,那你需要在自己的cpp中來進行注冊就行了,不要在這個文件中進行修改,終于明白為什么#define REGISTER_LAYER_CREATOR要使用static靜態變量聲明了,因為這樣可以在編譯的時候就導入了這個Creator了,其實這個聲明放在cpp文件中只是執行一次,其他時候并不會執行。


// Get pooling layer according to engine.
template <typename Dtype>
shared_ptr<Layer<Dtype> > GetPoolingLayer(const LayerParameter& param) {
  PoolingParameter_Engine engine = param.pooling_param().engine();
  if (engine == PoolingParameter_Engine_DEFAULT) {
    engine = PoolingParameter_Engine_CAFFE;
#ifdef USE_CUDNN
    engine = PoolingParameter_Engine_CUDNN;
#endif
  }
  if (engine == PoolingParameter_Engine_CAFFE) {
    return shared_ptr<Layer<Dtype> >(new PoolingLayer<Dtype>(param));
#ifdef USE_CUDNN
  } else if (engine == PoolingParameter_Engine_CUDNN) {
    if (param.top_size() > 1) {
      LOG(INFO) << "cuDNN does not support multiple tops. "
                << "Using Caffe's own pooling layer.";
      return shared_ptr<Layer<Dtype> >(new PoolingLayer<Dtype>(param));
    }
    // CuDNN assumes layers are not being modified in place, thus
    // breaking our index tracking for updates in some cases in Caffe.
    // Until there is a workaround in Caffe (index management) or
    // cuDNN, use Caffe layer to max pooling, or don't use in place
    // layers after max pooling layers
    if (param.pooling_param().pool() == PoolingParameter_PoolMethod_MAX) {
        return shared_ptr<Layer<Dtype> >(new PoolingLayer<Dtype>(param));
    } else {
        return shared_ptr<Layer<Dtype> >(new CuDNNPoolingLayer<Dtype>(param));
    }
#endif
  } else {
    LOG(FATAL) << "Layer " << param.name() << " has unknown engine.";
  }
}

REGISTER_LAYER_CREATOR(Pooling, GetPoolingLayer);
// Get LRN layer according to engine
template <typename Dtype>
shared_ptr<Layer<Dtype> > GetLRNLayer(const LayerParameter& param) {
  LRNParameter_Engine engine = param.lrn_param().engine();

  if (engine == LRNParameter_Engine_DEFAULT) {
#ifdef USE_CUDNN
    engine = LRNParameter_Engine_CUDNN;
#else
    engine = LRNParameter_Engine_CAFFE;
#endif
  }

  if (engine == LRNParameter_Engine_CAFFE) {
    return shared_ptr<Layer<Dtype> >(new LRNLayer<Dtype>(param));
#ifdef USE_CUDNN
  } else if (engine == LRNParameter_Engine_CUDNN) {
    LRNParameter lrn_param = param.lrn_param();

    if (lrn_param.norm_region() ==LRNParameter_NormRegion_WITHIN_CHANNEL) {
      return shared_ptr<Layer<Dtype> >(new CuDNNLCNLayer<Dtype>(param));
    } else {
      // local size is too big to be handled through cuDNN
      if (param.lrn_param().local_size() > CUDNN_LRN_MAX_N) {
        return shared_ptr<Layer<Dtype> >(new LRNLayer<Dtype>(param));
      } else {
        return shared_ptr<Layer<Dtype> >(new CuDNNLRNLayer<Dtype>(param));
      }
    }
#endif
  } else {
    LOG(FATAL) << "Layer " << param.name() << " has unknown engine.";
  }
}

REGISTER_LAYER_CREATOR(LRN, GetLRNLayer);

// Get relu layer according to engine.
template <typename Dtype>
shared_ptr<Layer<Dtype> > GetReLULayer(const LayerParameter& param) {
  ReLUParameter_Engine engine = param.relu_param().engine();
  if (engine == ReLUParameter_Engine_DEFAULT) {
    engine = ReLUParameter_Engine_CAFFE;
#ifdef USE_CUDNN
    engine = ReLUParameter_Engine_CUDNN;
#endif
  }
  if (engine == ReLUParameter_Engine_CAFFE) {
    return shared_ptr<Layer<Dtype> >(new ReLULayer<Dtype>(param));
#ifdef USE_CUDNN
  } else if (engine == ReLUParameter_Engine_CUDNN) {
    return shared_ptr<Layer<Dtype> >(new CuDNNReLULayer<Dtype>(param));
#endif
  } else {
    LOG(FATAL) << "Layer " << param.name() << " has unknown engine.";
  }
}
REGISTER_LAYER_CREATOR(ReLU, GetReLULayer);

// Get sigmoid layer according to engine.
template <typename Dtype>
shared_ptr<Layer<Dtype> > GetSigmoidLayer(const LayerParameter& param) {
  SigmoidParameter_Engine engine = param.sigmoid_param().engine();
  if (engine == SigmoidParameter_Engine_DEFAULT) {
    engine = SigmoidParameter_Engine_CAFFE;
#ifdef USE_CUDNN
    engine = SigmoidParameter_Engine_CUDNN;
#endif
  }
  if (engine == SigmoidParameter_Engine_CAFFE) {
    return shared_ptr<Layer<Dtype> >(new SigmoidLayer<Dtype>(param));
#ifdef USE_CUDNN
  } else if (engine == SigmoidParameter_Engine_CUDNN) {
    return shared_ptr<Layer<Dtype> >(new CuDNNSigmoidLayer<Dtype>(param));
#endif
  } else {
    LOG(FATAL) << "Layer " << param.name() << " has unknown engine.";
  }
}

REGISTER_LAYER_CREATOR(Sigmoid, GetSigmoidLayer);

// Get softmax layer according to engine.
template <typename Dtype>
shared_ptr<Layer<Dtype> > GetSoftmaxLayer(const LayerParameter& param) {
  SoftmaxParameter_Engine engine = param.softmax_param().engine();
  if (engine == SoftmaxParameter_Engine_DEFAULT) {
    engine = SoftmaxParameter_Engine_CAFFE;
#ifdef USE_CUDNN
    engine = SoftmaxParameter_Engine_CUDNN;
#endif
  }
  if (engine == SoftmaxParameter_Engine_CAFFE) {
    return shared_ptr<Layer<Dtype> >(new SoftmaxLayer<Dtype>(param));
#ifdef USE_CUDNN
  } else if (engine == SoftmaxParameter_Engine_CUDNN) {
    return shared_ptr<Layer<Dtype> >(new CuDNNSoftmaxLayer<Dtype>(param));
#endif
  } else {
    LOG(FATAL) << "Layer " << param.name() << " has unknown engine.";
  }
}

REGISTER_LAYER_CREATOR(Softmax, GetSoftmaxLayer);

// Get tanh layer according to engine.
template <typename Dtype>
shared_ptr<Layer<Dtype> > GetTanHLayer(const LayerParameter& param) {
  TanHParameter_Engine engine = param.tanh_param().engine();
  if (engine == TanHParameter_Engine_DEFAULT) {
    engine = TanHParameter_Engine_CAFFE;
#ifdef USE_CUDNN
    engine = TanHParameter_Engine_CUDNN;
#endif
}
  if (engine == TanHParameter_Engine_CAFFE) {
    return shared_ptr<Layer<Dtype> >(new TanHLayer<Dtype>(param));
#ifdef USE_CUDNN
  } else if (engine == TanHParameter_Engine_CUDNN) {
    return shared_ptr<Layer<Dtype> >(new CuDNNTanHLayer<Dtype>(param));
#endif
  } else {
    LOG(FATAL) << "Layer " << param.name() << " has unknown engine.";
  }
}

REGISTER_LAYER_CREATOR(TanH, GetTanHLayer);

#ifdef WITH_PYTHON_LAYER
template <typename Dtype>
shared_ptr<Layer<Dtype> > GetPythonLayer(const LayerParameter& param) {
  Py_Initialize();
  try {
    bp::object module = bp::import(param.python_param().module().c_str());
    bp::object layer = module.attr(param.python_param().layer().c_str())(param);
    return bp::extract<shared_ptr<PythonLayer<Dtype> > >(layer)();
  } catch (bp::error_already_set) {
    PyErr_Print();
    throw;
  }
}

REGISTER_LAYER_CREATOR(Python, GetPythonLayer);
#endif

// Layers that use their constructor as their default creator should be
// registered in their corresponding cpp files. Do not register them here.
}  // namespace caffe
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,333評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,491評論 3 416
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,263評論 0 374
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,946評論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,708評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,186評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,255評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,409評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,939評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,774評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,976評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,518評論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,209評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,641評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,872評論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,650評論 3 391
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,958評論 2 373

推薦閱讀更多精彩內容