caffe之視覺層

前言:本文參考博客denny402
所有的層都具有參數(shù)name, type, bottom, top和類型名_param。
本文只講解視覺層(Vision Layers)的參數(shù),視覺層包括Convolution, Pooling, Local Response Normalization (LRN), im2col等層。
1、Convolution層:
就是卷積層,是卷積神經(jīng)網(wǎng)絡(luò)(CNN)的核心層。

層類型:Convolution
   lr_mult: 學(xué)習(xí)率的系數(shù),最終的學(xué)習(xí)率是這個(gè)數(shù)乘以solver.prototxt配置文件中的base_lr。如果有兩個(gè)lr_mult, 則第一個(gè)表示權(quán)值的學(xué)習(xí)率,第二個(gè)表示偏置項(xiàng)的學(xué)習(xí)率。一般偏置項(xiàng)的學(xué)習(xí)率是權(quán)值學(xué)習(xí)率的兩倍。
在后面的convolution_param中,我們可以設(shè)定卷積層的特有參數(shù)。

必須設(shè)置的參數(shù):
   num_output: 卷積核(filter)的個(gè)數(shù)
   kernel_size: 卷積核的大小。如果卷積核的長和寬不等,需要用kernel_h和kernel_w分別設(shè)定

其它參數(shù):
   stride: 卷積核的步長,默認(rèn)為1。也可以用stride_h和stride_w來設(shè)置。
   pad: 擴(kuò)充邊緣,默認(rèn)為0,不擴(kuò)充。 擴(kuò)充的時(shí)候是左右、上下對(duì)稱的,比如卷積核的大小為5*5,那么pad設(shè)置為2,則四個(gè)邊緣都擴(kuò)充2個(gè)像素,即寬度和高度都擴(kuò)充了4個(gè)像素,這樣卷積運(yùn)算之后的特征圖就不會(huì)變小。也可以通過pad_h和pad_w來分別設(shè)定。

weight_filler: 權(quán)值初始化。 默認(rèn)為“constant",值全為0,很多時(shí)候我們用"xavier"算法來進(jìn)行初始化,也可以設(shè)置為”gaussian"
   bias_filler: 偏置項(xiàng)的初始化。一般設(shè)置為"constant",值全為0。
   bias_term: 是否開啟偏置項(xiàng),默認(rèn)為true, 開啟
   group: 分組,默認(rèn)為1組。如果大于1,我們限制卷積的連接操作在一個(gè)子集內(nèi)。如果我們根據(jù)圖像的通道來分組,那么第i個(gè)輸出分組只能與第i個(gè)輸入分組進(jìn)行連接。

輸入:n*c0*w0*h0
輸出:n*c1*w1*h1
其中,c1就是參數(shù)中的num_output,生成的特征圖個(gè)數(shù)
w1=(w0+2*pad-kernel_size)/stride+1;
h1=(h0+2*pad-kernel_size)/stride+1;
如果設(shè)置stride為1,前后兩次卷積部分存在重疊。如果設(shè)置pad=(kernel_size-1)/2,則運(yùn)算后,寬度和高度不變。
示例:

layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 20
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

2、Pooling層
也叫池化層,為了減少運(yùn)算量和數(shù)據(jù)維度而設(shè)置的一種層。

層類型:Pooling
必須設(shè)置的參數(shù):
   kernel_size: 池化的核大小。也可以用kernel_h和kernel_w分別設(shè)定。
其它參數(shù):
   pool: 池化方法,默認(rèn)為MAX。目前可用的方法有MAX, AVE, 或STOCHASTIC
   pad: 和卷積層的pad的一樣,進(jìn)行邊緣擴(kuò)充。默認(rèn)為0
   stride: 池化的步長,默認(rèn)為1。一般我們?cè)O(shè)置為2,即不重疊。也可以用stride_h和stride_w來設(shè)置。

pooling層的運(yùn)算方法基本是和卷積層是一樣的。
輸入:n*c0*w0*h0
輸出:n*c1*w1*h1
和卷積層的區(qū)別就是其中的c保持不變
w1=(w0+2*pad-kernel_size)/stride+1;
h1=(h0+2*pad-kernel_size)/stride+1;
如果設(shè)置stride為2,前后兩次卷積部分不重疊。100100的特征圖池化后,變成5050.
示例:

layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

3、Local Response Normalization (LRN)層
此層是對(duì)一個(gè)輸入的局部區(qū)域進(jìn)行歸一化,達(dá)到“側(cè)抑制”的效果。可去搜索AlexNet或GoogLenet,里面就用到了這個(gè)功能

層類型:LRN
參數(shù):全部為可選,沒有必須
  local_size: 默認(rèn)為5。如果是跨通道LRN,則表示求和的通道數(shù);如果是在通道內(nèi)LRN,則表示求和的正方形區(qū)域長度。
  alpha: 默認(rèn)為1,歸一化公式中的參數(shù)。
  beta: 默認(rèn)為5,歸一化公式中的參數(shù)。
  norm_region: 默認(rèn)為ACROSS_CHANNELS。有兩個(gè)選擇,ACROSS_CHANNELS表示在相鄰的通道間求和歸一化。WITHIN_CHANNEL表示在一個(gè)通道內(nèi)部特定的區(qū)域內(nèi)進(jìn)行求和歸一化。與前面的local_size參數(shù)對(duì)應(yīng)。

歸一化公式:對(duì)于每一個(gè)輸入, 去除以

,得到歸一化后的輸出

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,461評(píng)論 6 532
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,538評(píng)論 3 417
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,423評(píng)論 0 375
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,991評(píng)論 1 312
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 71,761評(píng)論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,207評(píng)論 1 324
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,268評(píng)論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢(mèng)啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,419評(píng)論 0 288
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,959評(píng)論 1 335
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 40,782評(píng)論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 42,983評(píng)論 1 369
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,528評(píng)論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,222評(píng)論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,653評(píng)論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,901評(píng)論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 51,678評(píng)論 3 392
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 47,978評(píng)論 2 374

推薦閱讀更多精彩內(nèi)容