安裝nvidia驅動:
CentOS 7.0 Nvidia顯卡安裝步驟:
1 在英偉達官網下載相應驅動:
http://www.nvidia.com/download/driverResults.aspx/122825/en-us
2 屏蔽默認帶有的nouveau:
使用su命令切換到root用戶下: su root
打開/lib/modprobe.d/dist-blacklist.conf
將nvidiafb注釋掉。
#blacklist nvidiafb
然后添加以下語句:
blacklist nouveau
options nouveau modeset=0
3 重建initramfs image步驟:
# mv /boot/initramfs-(uname?r).img /boot/initramfs?(uname -r).img.bak
# dracut /boot/initramfs-(uname?r).img(uname?r)
4 修改運行級別為文本模式:
# systemctl set-default multi-user.target
5 重新啟動, 使用root用戶登陸:
# reboot
6 進入下載的驅動所在目錄:
# chmod +x NVIDIA-Linux-x86_64-346.47.run
# ./NVIDIA-Linux-x86_64-346.47.run
安裝過程中,選擇accep,其余默認選擇yes或者install
7 修改運行級別回圖形模式:
# systemctl set-default graphical.target
8 重新啟動:
# reboot
9 驗證,結果如下圖則成功:
$ nvidia-smi
安裝cuda:
1下載安裝包:
https://developer.nvidia.com/cuda-80-ga2-download-archive
選擇rpm(local),如下:
2安裝指令如下:
$ sudo rpm -i cuda-repo-rhel7-8-0-local-ga2-8.0.61-1.x86_64.rpm
$ sudo yum clean all
$ sudo yum install cuda
3配置環境變量:
$ vim ~/.bashrc
添加以下內容:
export CUDA_HOME=/usr/local/cuda-8.0?
export PATH=/usr/local/cuda-8.0/bin:$PATH?
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH?
export LD_LIBRARY_PATH="/usr/local/cuda-8.0/lib:${LD_LIBRARY_PATH}"
4執行以下指令后重啟:
source ~/.bashrc?
5.驗證,結果顯示PASS則安裝成功:
$ cd /usr/local/cuda-8.0/samples/1_Utilities/bandwidthTest/
$ sudo make
$ cd /usr/local/cuda-8.0/samples/
$ ./bin/x86_64/linux/release/bandwidthTest
備注:
1.? ? 若提示以下錯誤:
“error:unable to find the kernel source tree for the currently running kernel. please make sure you have installed the kernel source files for your kernel and that they are properly configured; on red hat linux system, for example, be sure you have the 'kernel-source' or 'kernel-devel' RPM installed. if you know the correct kernel source files are installed ,you may specify the kernel source path with the '--kernel-source-path' command line option.“
執行以下指令安裝kernel-devel包:
$ sudo yum install kernel-devel-$(uname -r)
2.? ? 報錯“Error: Package:1:nvidia-kmod-375.51-2.el7.x86_64 (cuda) Requires: dkms“
安裝dkms依賴:
$ sudo yum install epel-release
$ sudo yum install dkms
安裝cuDNN:
1.???nvidia網站下載安裝包,需要注冊,(這里選用cudnn-8.0-linux-x64-v6.0版,下載的后綴名可能不一樣,直接改成.tgz就可以了):
https://developer.nvidia.com/cudnn
2.????解壓生成cuda文件夾:
$ tar -zxvf cudnn-8.0-linux-x64-v6.0.tgz
3.???拷貝文件到CUDA安裝目錄:
$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
安裝jdk:
1?在oracle官網下載安裝包:
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
2?用rpm安裝:
$ sudo rpm -i jdk-8u91-linux-x64.rpm
3?配置環境變量(具體jdk版本號需要進入/usr/java文件夾查看):
$ export JAVA_HOME=/usr/java/jdk1.8.0_91
安裝bazel:
1?下載指定版本的安裝腳本:
https://github.com/bazelbuild/bazel/releases
2?修改文件屬性:
$ chmod +x bazel--installer-linux-x86_64.sh
3?安裝:
$./bazel--installer-linux-x86_64.sh --user
4?配置PATH變量:
$ vim ~/.bashrc
添加:export PATH="$PATH:$HOME/bin"
安裝tensorflow:
1?安裝依賴:
$ sudo yum -y install numpy swig python-devel python-wheel python-pip?zlib zlib-devel
2?在github上下載安裝文件.zip,并解壓:
https://github.com/tensorflow/tensorflow
$ unzip tensorflow*.zip
3?進入解壓后的文件夾進行配置:
$ cd tensorflow
$ ./configure
參考配置如下:
4?編譯(gpu版),這個過程有點長:
$ bazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
5 生成.whl包:
$ bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
6?安裝生成的包:
$ sudo pip install /tmp/tensorflow_pkg/tensorflow-*.whl
7?重啟。
8?命令行輸入“python“,在python環境下執行“import tensorflow”,如無報錯,則安裝成功。